azure.ai.ml package¶
-
class
azure.ai.ml.
AmlToken
(**kwargs)[source]¶ AML Token identity configuration.
All required parameters must be populated in order to send to Azure.
- Variables
identity_type (str or IdentityConfigurationType) – Required. [Required] Specifies the type of identity framework.Constant filled by server. Possible values include: “Managed”, “AMLToken”, “UserIdentity”.
-
as_dict
(keep_readonly=True, key_transformer=<function attribute_transformer>, **kwargs)¶ Return a dict that can be JSONify using json.dump.
Advanced usage might optionally use a callback as parameter:
Key is the attribute name used in Python. Attr_desc is a dict of metadata. Currently contains ‘type’ with the msrest type and ‘key’ with the RestAPI encoded key. Value is the current value in this object.
The string returned will be used to serialize the key. If the return type is a list, this is considered hierarchical result dict.
See the three examples in this file:
attribute_transformer
full_restapi_key_transformer
last_restapi_key_transformer
If you want XML serialization, you can pass the kwargs is_xml=True.
- Parameters
key_transformer (function) – A key transformer function.
- Returns
A dict JSON compatible object
- Return type
-
classmethod
deserialize
(data, content_type=None)¶ Parse a str using the RestAPI syntax and return a model.
-
classmethod
enable_additional_properties_sending
()¶
-
classmethod
from_dict
(data, key_extractors=None, content_type=None)¶ Parse a dict using given key extractor return a model.
By default consider key extractors (rest_key_case_insensitive_extractor, attribute_key_case_insensitive_extractor and last_rest_key_case_insensitive_extractor)
-
classmethod
is_xml_model
()¶
-
serialize
(keep_readonly=False, **kwargs)¶ Return the JSON that would be sent to azure from this model.
This is an alias to as_dict(full_restapi_key_transformer, keep_readonly=False).
If you want XML serialization, you can pass the kwargs is_xml=True.
-
class
azure.ai.ml.
Input
(*, type: str = "'uri_folder'", path: str = 'None', mode: str = "'ro_mount'", optional: bool = 'None', description: str = 'None', **kwargs)[source]¶ -
class
azure.ai.ml.
Input
(*, type: str = "'number'", default: float = 'None', min: float = 'None', max: float = 'None', optional: bool = 'None', description: str = 'None', **kwargs) -
class
azure.ai.ml.
Input
(*, type: str = "'integer'", default: int = 'None', min: int = 'None', max: int = 'None', optional: bool = 'None', description: str = 'None', **kwargs) -
class
azure.ai.ml.
Input
(*, type: str = "'string'", default: str = 'None', optional: bool = 'None', description: str = 'None', **kwargs) -
class
azure.ai.ml.
Input
(*, type: str = "'boolean'", default: bool = 'None', optional: bool = 'None', description: str = 'None', **kwargs) Define an input of a Component or Job.
Default to be a uri_folder Input.
- Parameters
type (str) – The type of the data input. Possible values include: ‘uri_folder’, ‘uri_file’, ‘mltable’, ‘mlflow_model’, ‘custom_model’, ‘integer’, ‘number’, ‘string’, ‘boolean’
path (str) – The path to which the input is pointing. Could be pointing to local data, cloud data, a registered name, etc.
mode (str) – The mode of the data input. Possible values are: ‘ro_mount’: Read-only mount the data, ‘download’: Download the data to the compute target, ‘direct’: Pass in the URI as a string
default (Union[str, integer, float, bool]) – The default value of this input. When a default is set, the input will be optional
min (Union[integer, float]) – The min value – if a smaller value is passed to a job, the job execution will fail
max (Union[integer, float]) – The max value – if a larger value is passed to a job, the job execution will fail
optional (bool) – Determine if this input is optional
description (str) – Description of the input
-
get
(key: Any, default: Optional[Any] = None) → Any¶
-
class
azure.ai.ml.
MLClient
(credential: azure.identity._credentials.chained.ChainedTokenCredential, subscription_id: str, resource_group_name: str, workspace_name: Optional[str] = None, **kwargs)[source]¶ A client class to interact with Azure ML services.
Use this client to manage Azure ML resources, e.g. workspaces, jobs, models and so on.
Initiate Azure ML client
- Parameters
credential (ChainedTokenCredential) – Credential to use for authentication.
subscription_id (str) – Azure subscription ID.
resource_group_name (str) – Azure resource group.
workspace_name (str, optional) – Workspace to use in the client, optional for non workspace dependent operations., defaults to None
-
begin_create_or_update
(entity: Union[azure.ai.ml.entities._workspace.workspace.Workspace, azure.ai.ml.entities._compute.compute.Compute, azure.ai.ml.entities._deployment.online_deployment.OnlineDeployment, azure.ai.ml.entities._endpoint.online_endpoint.OnlineEndpoint, azure.ai.ml.entities._deployment.batch_deployment.BatchDeployment, azure.ai.ml.entities._endpoint.batch_endpoint.BatchEndpoint], **kwargs) → azure.core.polling._poller.LROPoller[source]¶ Creates or updates an Azure ML resource asynchronously.
- Parameters
entity (Union[azure.ai.ml.entities.Workspace, azure.ai.ml.entities.Compute, azure.ai.ml.entities.OnlineDeployment, azure.ai.ml.entities.OnlineEndpoint, azure.ai.ml.entities.BatchDeployment, azure.ai.ml.entities.BatchEndpoint]) – The resource to create or update.
- Returns
The resource after create/update operation
- Return type
Optional[Union[azure.ai.ml.entities.Workspace, azure.ai.ml.entities.Compute, azure.ai.ml.entities.OnlineDeployment, azure.ai.ml.entities.OnlineEndpoint, azure.ai.ml.entities.BatchDeployment, azure.ai.ml.entities.BatchEndpoint]]
-
create_or_update
(entity: Union[azure.ai.ml.entities._job.job.Job, azure.ai.ml.entities._builders.base_node.BaseNode, azure.ai.ml.entities._assets._artifacts.model.Model, azure.ai.ml.entities._assets.environment.Environment, azure.ai.ml.entities._component.component.Component, azure.ai.ml.entities._datastore.datastore.Datastore], **kwargs) → Union[azure.ai.ml.entities._job.job.Job, azure.ai.ml.entities._assets._artifacts.model.Model, azure.ai.ml.entities._assets.environment.Environment, azure.ai.ml.entities._component.component.Component, azure.ai.ml.entities._datastore.datastore.Datastore][source]¶ Creates or updates an Azure ML resource.
- Parameters
entity (Union[azure.ai.ml.entities.Job, azure.ai.ml.entities.Model, azure.ai.ml.entities.Environment, azure.ai.ml.entities.Component, azure.ai.ml.entities.Datastore]) – The resource to create or update.
- Returns
The created or updated resource
- Return type
Union[azure.ai.ml.entities.Job, azure.ai.ml.entities.Model, azure.ai.ml.entities.Environment, azure.ai.ml.entities.Component, azure.ai.ml.entities.Datastore]
-
classmethod
from_config
(credential: azure.identity._credentials.chained.ChainedTokenCredential, path: Optional[Union[os.PathLike, str]] = None, _file_name=None, **kwargs) → azure.ai.ml._ml_client.MLClient[source]¶ Return a workspace object from an existing Azure Machine Learning Workspace.
Reads workspace configuration from a file. Throws an exception if the config file can’t be found.
The method provides a simple way to reuse the same workspace across multiple Python notebooks or projects. Users can save the workspace Azure Resource Manager (ARM) properties using the [workspace.write_config](https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py) method, and use this method to load the same workspace in different Python notebooks or projects without retyping the workspace ARM properties.
- Parameters
credential (azureml.core.authentication.ChainedTokenCredential) – The credential object for the workspace.
path (str) – The path to the config file or starting directory to search. The parameter defaults to starting the search in the current directory.
_file_name (str) – Allows overriding the config file name to search for when path is a directory path.
kwargs (dict) – A dictionary of additional configuration parameters.
- Returns
The workspace object for an existing Azure ML Workspace.
- Return type
-
property
batch_deployments
¶ A collection of batch deployment related operations
- Returns
Batch Deployment operations
- Return type
-
property
batch_endpoints
¶ A collection of batch endpoint related operations
- Returns
Batch Endpoint operations
- Return type
-
property
components
¶ A collection of component related operations
- Returns
Component operations
- Return type
-
property
compute
¶ A collection of compute related operations
- Returns
Compute operations
- Return type
-
property
connections
¶ A collection of workspace connection related operations
- Returns
Workspace Connections operations
- Return type
-
property
data
¶ A collection of data related operations
- Returns
Data operations
- Return type
-
property
datasets
¶ A collection of dataset related operations
- Returns
Dataset operations
- Return type
DatasetOperations
-
property
datastores
¶ A collection of datastore related operations
- Returns
Datastore operations
- Return type
-
property
environments
¶ A collection of environment related operations
- Returns
Environment operations
- Return type
-
property
jobs
¶ A collection of job related operations
- Returns
Job operations
- Return type
JObOperations
-
property
models
¶ A collection of model related operations
- Returns
Model operations
- Return type
-
property
online_deployments
¶ A collection of online deployment related operations
- Returns
Online Deployment operations
- Return type
-
property
online_endpoints
¶ A collection of online endpoint related operations
- Returns
Online Endpoint operations
- Return type
-
property
workspace_name
¶ The workspace where workspace dependent operations will be executed in.
- Returns
Default workspace name
- Return type
Optional[str]
-
property
workspaces
¶ A collection of workspace related operations
- Returns
Workspace operations
- Return type
-
class
azure.ai.ml.
ManagedIdentity
(*, client_id: Optional[str] = None, object_id: Optional[str] = None, resource_id: Optional[str] = None, **kwargs)[source]¶ Managed identity configuration.
All required parameters must be populated in order to send to Azure.
- Variables
identity_type (str or IdentityConfigurationType) – Required. [Required] Specifies the type of identity framework.Constant filled by server. Possible values include: “Managed”, “AMLToken”, “UserIdentity”.
client_id (str) – Specifies a user-assigned identity by client ID. For system-assigned, do not set this field.
object_id (str) – Specifies a user-assigned identity by object ID. For system-assigned, do not set this field.
resource_id (str) – Specifies a user-assigned identity by ARM resource ID. For system-assigned, do not set this field.
- Keyword Arguments
client_id (str) – Specifies a user-assigned identity by client ID. For system-assigned, do not set this field.
object_id (str) – Specifies a user-assigned identity by object ID. For system-assigned, do not set this field.
resource_id (str) – Specifies a user-assigned identity by ARM resource ID. For system-assigned, do not set this field.
-
as_dict
(keep_readonly=True, key_transformer=<function attribute_transformer>, **kwargs)¶ Return a dict that can be JSONify using json.dump.
Advanced usage might optionally use a callback as parameter:
Key is the attribute name used in Python. Attr_desc is a dict of metadata. Currently contains ‘type’ with the msrest type and ‘key’ with the RestAPI encoded key. Value is the current value in this object.
The string returned will be used to serialize the key. If the return type is a list, this is considered hierarchical result dict.
See the three examples in this file:
attribute_transformer
full_restapi_key_transformer
last_restapi_key_transformer
If you want XML serialization, you can pass the kwargs is_xml=True.
- Parameters
key_transformer (function) – A key transformer function.
- Returns
A dict JSON compatible object
- Return type
-
classmethod
deserialize
(data, content_type=None)¶ Parse a str using the RestAPI syntax and return a model.
-
classmethod
enable_additional_properties_sending
()¶
-
classmethod
from_dict
(data, key_extractors=None, content_type=None)¶ Parse a dict using given key extractor return a model.
By default consider key extractors (rest_key_case_insensitive_extractor, attribute_key_case_insensitive_extractor and last_rest_key_case_insensitive_extractor)
-
classmethod
is_xml_model
()¶
-
serialize
(keep_readonly=False, **kwargs)¶ Return the JSON that would be sent to azure from this model.
This is an alias to as_dict(full_restapi_key_transformer, keep_readonly=False).
If you want XML serialization, you can pass the kwargs is_xml=True.
-
class
azure.ai.ml.
MpiDistribution
(*, process_count_per_instance: Optional[int] = None, **kwargs)[source]¶ MPI distribution configuration.
- Parameters
process_count_per_instance (int) – Number of processes per MPI node.
- Keyword Arguments
process_count_per_instance (int) – Number of processes per MPI node.
-
as_dict
(keep_readonly=True, key_transformer=<function attribute_transformer>, **kwargs)¶ Return a dict that can be JSONify using json.dump.
Advanced usage might optionally use a callback as parameter:
Key is the attribute name used in Python. Attr_desc is a dict of metadata. Currently contains ‘type’ with the msrest type and ‘key’ with the RestAPI encoded key. Value is the current value in this object.
The string returned will be used to serialize the key. If the return type is a list, this is considered hierarchical result dict.
See the three examples in this file:
attribute_transformer
full_restapi_key_transformer
last_restapi_key_transformer
If you want XML serialization, you can pass the kwargs is_xml=True.
- Parameters
key_transformer (function) – A key transformer function.
- Returns
A dict JSON compatible object
- Return type
-
classmethod
deserialize
(data, content_type=None)¶ Parse a str using the RestAPI syntax and return a model.
-
classmethod
enable_additional_properties_sending
()¶
-
classmethod
from_dict
(data, key_extractors=None, content_type=None)¶ Parse a dict using given key extractor return a model.
By default consider key extractors (rest_key_case_insensitive_extractor, attribute_key_case_insensitive_extractor and last_rest_key_case_insensitive_extractor)
-
classmethod
is_xml_model
()¶
-
serialize
(keep_readonly=False, **kwargs)¶ Return the JSON that would be sent to azure from this model.
This is an alias to as_dict(full_restapi_key_transformer, keep_readonly=False).
If you want XML serialization, you can pass the kwargs is_xml=True.
-
validate
()¶ Validate this model recursively and return a list of ValidationError.
- Returns
A list of validation error
- Return type
-
type
¶ A data descriptor that transforms value from snake_case to CamelCase in setter, CamelCase to snake_case in getter. When the optional private_name is provided, the descriptor will set the private_name in the object’s __dict__.
-
class
azure.ai.ml.
Output
(type='uri_folder', path=None, mode='rw_mount', description=None)[source]¶ -
class
azure.ai.ml.
Output
(type='uri_file', path=None, mode='rw_mount', description=None) Define an output of a Component or Job.
- Parameters
type (str) – The type of the data output. Possible values include: ‘uri_folder’, ‘uri_file’, ‘mltable’, ‘mlflow_model’, ‘custom_model’, and user-defined types.
path (str) – The path to which the output is pointing. Needs to point to a cloud path.
mode (str) – The mode of the data output. Possible values are: ‘rw_mount’: Read-write mount the data, ‘upload’: Upload the data from the compute target, ‘direct’: Pass in the URI as a string
description (str) – Description of the output
-
get
(key: Any, default: Optional[Any] = None) → Any¶
-
class
azure.ai.ml.
PyTorchDistribution
(*, process_count_per_instance: Optional[int] = None, **kwargs)[source]¶ PyTorch distribution configuration.
- Parameters
process_count_per_instance (int) – Number of processes per node.
- Keyword Arguments
process_count_per_instance (int) – Number of processes per node.
-
as_dict
(keep_readonly=True, key_transformer=<function attribute_transformer>, **kwargs)¶ Return a dict that can be JSONify using json.dump.
Advanced usage might optionally use a callback as parameter:
Key is the attribute name used in Python. Attr_desc is a dict of metadata. Currently contains ‘type’ with the msrest type and ‘key’ with the RestAPI encoded key. Value is the current value in this object.
The string returned will be used to serialize the key. If the return type is a list, this is considered hierarchical result dict.
See the three examples in this file:
attribute_transformer
full_restapi_key_transformer
last_restapi_key_transformer
If you want XML serialization, you can pass the kwargs is_xml=True.
- Parameters
key_transformer (function) – A key transformer function.
- Returns
A dict JSON compatible object
- Return type
-
classmethod
deserialize
(data, content_type=None)¶ Parse a str using the RestAPI syntax and return a model.
-
classmethod
enable_additional_properties_sending
()¶
-
classmethod
from_dict
(data, key_extractors=None, content_type=None)¶ Parse a dict using given key extractor return a model.
By default consider key extractors (rest_key_case_insensitive_extractor, attribute_key_case_insensitive_extractor and last_rest_key_case_insensitive_extractor)
-
classmethod
is_xml_model
()¶
-
serialize
(keep_readonly=False, **kwargs)¶ Return the JSON that would be sent to azure from this model.
This is an alias to as_dict(full_restapi_key_transformer, keep_readonly=False).
If you want XML serialization, you can pass the kwargs is_xml=True.
-
validate
()¶ Validate this model recursively and return a list of ValidationError.
- Returns
A list of validation error
- Return type
-
type
¶ A data descriptor that transforms value from snake_case to CamelCase in setter, CamelCase to snake_case in getter. When the optional private_name is provided, the descriptor will set the private_name in the object’s __dict__.
-
class
azure.ai.ml.
TensorFlowDistribution
(*, parameter_server_count: Optional[int] = 0, worker_count: Optional[int] = None, **kwargs)[source]¶ TensorFlow distribution configuration.
- Variables
- Keyword Arguments
-
as_dict
(keep_readonly=True, key_transformer=<function attribute_transformer>, **kwargs)¶ Return a dict that can be JSONify using json.dump.
Advanced usage might optionally use a callback as parameter:
Key is the attribute name used in Python. Attr_desc is a dict of metadata. Currently contains ‘type’ with the msrest type and ‘key’ with the RestAPI encoded key. Value is the current value in this object.
The string returned will be used to serialize the key. If the return type is a list, this is considered hierarchical result dict.
See the three examples in this file:
attribute_transformer
full_restapi_key_transformer
last_restapi_key_transformer
If you want XML serialization, you can pass the kwargs is_xml=True.
- Parameters
key_transformer (function) – A key transformer function.
- Returns
A dict JSON compatible object
- Return type
-
classmethod
deserialize
(data, content_type=None)¶ Parse a str using the RestAPI syntax and return a model.
-
classmethod
enable_additional_properties_sending
()¶
-
classmethod
from_dict
(data, key_extractors=None, content_type=None)¶ Parse a dict using given key extractor return a model.
By default consider key extractors (rest_key_case_insensitive_extractor, attribute_key_case_insensitive_extractor and last_rest_key_case_insensitive_extractor)
-
classmethod
is_xml_model
()¶
-
serialize
(keep_readonly=False, **kwargs)¶ Return the JSON that would be sent to azure from this model.
This is an alias to as_dict(full_restapi_key_transformer, keep_readonly=False).
If you want XML serialization, you can pass the kwargs is_xml=True.
-
validate
()¶ Validate this model recursively and return a list of ValidationError.
- Returns
A list of validation error
- Return type
-
type
¶ A data descriptor that transforms value from snake_case to CamelCase in setter, CamelCase to snake_case in getter. When the optional private_name is provided, the descriptor will set the private_name in the object’s __dict__.
-
class
azure.ai.ml.
UserIdentity
(**kwargs)[source]¶ User identity configuration.
All required parameters must be populated in order to send to Azure.
- Variables
identity_type (str or IdentityConfigurationType) – Required. [Required] Specifies the type of identity framework.Constant filled by server. Possible values include: “Managed”, “AMLToken”, “UserIdentity”.
-
as_dict
(keep_readonly=True, key_transformer=<function attribute_transformer>, **kwargs)¶ Return a dict that can be JSONify using json.dump.
Advanced usage might optionally use a callback as parameter:
Key is the attribute name used in Python. Attr_desc is a dict of metadata. Currently contains ‘type’ with the msrest type and ‘key’ with the RestAPI encoded key. Value is the current value in this object.
The string returned will be used to serialize the key. If the return type is a list, this is considered hierarchical result dict.
See the three examples in this file:
attribute_transformer
full_restapi_key_transformer
last_restapi_key_transformer
If you want XML serialization, you can pass the kwargs is_xml=True.
- Parameters
key_transformer (function) – A key transformer function.
- Returns
A dict JSON compatible object
- Return type
-
classmethod
deserialize
(data, content_type=None)¶ Parse a str using the RestAPI syntax and return a model.
-
classmethod
enable_additional_properties_sending
()¶
-
classmethod
from_dict
(data, key_extractors=None, content_type=None)¶ Parse a dict using given key extractor return a model.
By default consider key extractors (rest_key_case_insensitive_extractor, attribute_key_case_insensitive_extractor and last_rest_key_case_insensitive_extractor)
-
classmethod
is_xml_model
()¶
-
serialize
(keep_readonly=False, **kwargs)¶ Return the JSON that would be sent to azure from this model.
This is an alias to as_dict(full_restapi_key_transformer, keep_readonly=False).
If you want XML serialization, you can pass the kwargs is_xml=True.
-
azure.ai.ml.
command
(*, name: Optional[str] = None, description: Optional[str] = None, tags: Optional[Dict] = None, properties: Optional[Dict] = None, display_name: Optional[str] = None, command: Optional[str] = None, experiment_name: Optional[str] = None, environment: Optional[Union[str, azure.ai.ml.entities._assets.environment.Environment]] = None, environment_variables: Optional[Dict] = None, distribution: Optional[Union[Dict, azure.ai.ml.entities._job.distribution.MpiDistribution, azure.ai.ml.entities._job.distribution.TensorFlowDistribution, azure.ai.ml.entities._job.distribution.PyTorchDistribution]] = None, compute: Optional[str] = None, inputs: Optional[Dict] = None, outputs: Optional[Dict] = None, instance_count: Optional[int] = None, instance_type: Optional[str] = None, timeout: Optional[int] = None, code: Optional[Union[os.PathLike, str]] = None, identity: Optional[Union[azure.ai.ml._restclient.v2022_02_01_preview.models._models_py3.ManagedIdentity, azure.ai.ml._restclient.v2022_02_01_preview.models._models_py3.AmlToken, azure.ai.ml._restclient.v2022_02_01_preview.models._models_py3.UserIdentity]] = None, **kwargs) → azure.ai.ml.entities._builders.command.Command[source]¶ - Create a Command object which can be used inside dsl.pipeline as a function and
can also be created as a standalone command job.
- Parameters
name (str) – Name of the command job or component created
description (str) – a friendly description of the command
tags (Dict) – Tags to be attached to this command
properties (dict[str, str]) – The asset property dictionary.
display_name (str) – a friendly name
experiment_name (str) – Name of the experiment the job will be created under, if None is provided, default will be set to current directory name. Will be ignored as a pipeline step.
command (str) – the command string that will be run
environment (Union[str, azure.ai.ml.entities.Environment]) – the environment to use for this command
environment_variables (dict) – environment variables to set on the compute before this command is executed
distribution (Union[Dict, azure.ai.ml.MpiDistribution, azure.ai.ml.TensorFlowDistribution, azure.ai.ml.PyTorchDistribution]) – the distribution mode to use for this command
compute (str) – the name of the compute where the command job is executed( will not be used if the command is used as a component/function)
inputs (Dict) – a dict of inputs used by this command.
outputs (Dict) – the outputs of this command
instance_count – Optional number of instances or nodes used by the compute target. Defaults to 1.
instance_type – Optional type of VM used as supported by the compute target.
timeout – The number in seconds, after which the job will be cancelled.
code (Union[str, os.PathLike]) – the code folder to run – typically a local folder that will be uploaded as the job is submitted
identity (Union[azure.ai.ml.ManagedIdentity, azure.ai.ml.AmlToken]) – Identity that training job will use while running on compute.
-
azure.ai.ml.
load_batch_deployment
(path: Union[os.PathLike, str], **kwargs) → azure.ai.ml.entities._deployment.batch_deployment.BatchDeployment[source]¶ Construct a batch deployment object from yaml file.
- Parameters
path (str) – Path to a local file as the source.
params_override (List[Dict]) – Fields to overwrite on top of the yaml file. Format is [{“field1”: “value1”}, {“field2”: “value2”}]
- Returns
Constructed batch deployment object.
- Return type
-
azure.ai.ml.
load_batch_endpoint
(path: Union[os.PathLike, str], **kwargs) → azure.ai.ml.entities._endpoint.batch_endpoint.BatchEndpoint[source]¶ Construct a batch endpoint object from yaml file.
- Parameters
path (str) – Path to a local file as the source.
params_override (List[Dict]) – Fields to overwrite on top of the yaml file. Format is [{“field1”: “value1”}, {“field2”: “value2”}]
- Returns
Constructed batch endpoint object.
- Return type
-
azure.ai.ml.
load_component
(path: Optional[Union[os.PathLike, str]] = None, **kwargs) → Union[azure.ai.ml.entities._component.command_component.CommandComponent, azure.ai.ml.entities._component.parallel_component.ParallelComponent][source]¶ Load component from local or remote to a component function.
For example:
# Load a local component to a component function. component_func = load_component(path="custom_component/component_spec.yaml") # Load a remote component to a component function. component_func = load_component(client=ml_client, name="my_component", version=1) # Consuming the component func component = component_func(param1=xxx, param2=xxx)
- Parameters
path (str) – Local component yaml file.
params_override (List[Dict]) – Fields to overwrite on top of the yaml file. Format is [{“field1”: “value1”}, {“field2”: “value2”}]
client (MLClient) – An MLClient instance.
name (str) – Name of the component.
version (str) – Version of the component.
kwargs (dict) – A dictionary of additional configuration parameters.
- Returns
A function that can be called with parameters to get a azure.ai.ml.entities.Component
- Return type
Union[CommandComponent, ParallelComponent]
-
azure.ai.ml.
load_compute
(path: Union[os.PathLike, str], **kwargs) → azure.ai.ml.entities._compute.compute.Compute[source]¶ Construct a compute object from a yaml file.
-
azure.ai.ml.
load_data
(path: Union[os.PathLike, str], **kwargs) → azure.ai.ml.entities._assets._artifacts.data.Data[source]¶ Construct a data object from yaml file.
-
azure.ai.ml.
load_datastore
(path: Union[os.PathLike, str], **kwargs) → azure.ai.ml.entities._datastore.datastore.Datastore[source]¶ Construct a datastore object from a yaml file.
-
azure.ai.ml.
load_environment
(path: Union[os.PathLike, str], **kwargs) → azure.ai.ml.entities._assets.environment.Environment[source]¶ Construct a environment object from yaml file.
- Parameters
path (str) – Path to a local file as the source.
params_override (List[Dict]) – Fields to overwrite on top of the yaml file. Format is [{“field1”: “value1”}, {“field2”: “value2”}]
- Returns
Constructed environment object.
- Return type
-
azure.ai.ml.
load_job
(path: Union[os.PathLike, str], **kwargs) → azure.ai.ml.entities._job.job.Job[source]¶ Construct a job object from a yaml file.
-
azure.ai.ml.
load_model
(path: Union[os.PathLike, str], **kwargs) → azure.ai.ml.entities._assets._artifacts.model.Model[source]¶ Construct a model object from yaml file.
-
azure.ai.ml.
load_online_deployment
(path: Union[os.PathLike, str], **kwargs) → azure.ai.ml.entities._deployment.online_deployment.OnlineDeployment[source]¶ Construct a online deployment object from yaml file.
- Parameters
path (str) – Path to a local file as the source.
params_override (List[Dict]) – Fields to overwrite on top of the yaml file. Format is [{“field1”: “value1”}, {“field2”: “value2”}]
- Returns
Constructed online deployment object.
- Return type
-
azure.ai.ml.
load_online_endpoint
(path: Union[os.PathLike, str], **kwargs) → azure.ai.ml.entities._endpoint.online_endpoint.OnlineEndpoint[source]¶ Construct a online endpoint object from yaml file.
- Parameters
path (str) – Path to a local file as the source.
params_override (List[Dict]) – Fields to overwrite on top of the yaml file. Format is [{“field1”: “value1”}, {“field2”: “value2”}]
- Returns
Constructed online endpoint object.
- Return type
-
azure.ai.ml.
load_workspace
(path: Union[os.PathLike, str], **kwargs) → azure.ai.ml.entities._workspace.workspace.Workspace[source]¶ Load a workspace object from a yaml file.
-
azure.ai.ml.
load_workspace_connection
(path: Union[os.PathLike, str], **kwargs) → azure.ai.ml.entities._workspace.connections.workspace_connection.WorkspaceConnection[source]¶ Construct a workspace connection object from yaml file.
- Parameters
path (str) – Path to a local file as the source.
params_override (List[Dict]) – Fields to overwrite on top of the yaml file. Format is [{“field1”: “value1”}, {“field2”: “value2”}]
- Returns
Constructed workspace connection object.
- Return type
Subpackages¶
Submodules¶
azure.ai.ml.constants module¶
-
class
azure.ai.ml.constants.
ArmConstants
[source]¶ -
APP_INSIGHTS
= 'AppInsights'¶
-
APP_INSIGHTS_PARAMETER_NAME
= 'components'¶
-
ARRAY
= 'Array'¶
-
ASSET_PATH
= 'assetPath'¶
-
AZURE_MGMT_APPINSIGHT_API_VERSION
= '2015-05-01'¶
-
AZURE_MGMT_CONTAINER_REG_API_VERSION
= '2019-05-01'¶
-
AZURE_MGMT_KEYVAULT_API_VERSION
= '2019-09-01'¶
-
AZURE_MGMT_RESOURCE_API_VERSION
= '2020-06-01'¶
-
AZURE_MGMT_STORAGE_API_VERSION
= '2019-06-01'¶
-
BASE_TYPE
= 'base'¶
-
CODE_PARAMETER_NAME
= 'codes'¶
-
CODE_RESOURCE_NAME
= 'codeDeploymentCopy'¶
-
CODE_TYPE
= 'code'¶
-
CODE_VERSION_PARAMETER_NAME
= 'codeVersions'¶
-
CODE_VERSION_RESOURCE_NAME
= 'codeVersionDeploymentCopy'¶
-
CODE_VERSION_TYPE
= 'code_version'¶
-
CONTAINER_REGISTRY_PARAMETER_NAME
= 'registries'¶
-
DATASTORE_ID
= 'datastoreId'¶
-
DEFAULT_VALUE
= 'defaultValue'¶
-
DEPENDSON_PARAMETER_NAME
= 'dependsOn'¶
-
DEPLOYMENTS_PARAMETER_NAME
= 'onlineDeployments'¶
-
ENDPOINT_CREATE_OR_UPDATE_PARAMETER_NAME
= 'endpointCreateOrUpdate'¶
-
ENDPOINT_IDENTITY_PARAMETER_NAME
= 'onlineEndpointIdentity'¶
-
ENDPOINT_NAME_PARAMETER_NAME
= 'onlineEndpointName'¶
-
ENDPOINT_PARAMETER_NAME
= 'onlineEndpoint'¶
-
ENDPOINT_PROPERTIES_PARAMETER_NAME
= 'onlineEndpointProperties'¶
-
ENDPOINT_PROPERTIES_TRAFFIC_UPDATE_PARAMETER_NAME
= 'onlineEndpointPropertiesTrafficUpdate'¶
-
ENDPOINT_TAGS_PARAMETER_NAME
= 'onlineEndpointTags'¶
-
ENVIRONMENT_PARAMETER_NAME
= 'environments'¶
-
ENVIRONMENT_TYPE
= 'environment'¶
-
ENVIRONMENT_VERSION_RESOURCE_NAME
= 'environmentVersionDeploymentCopy'¶
-
ENVIRONMENT_VERSION_TYPE
= 'environment_version'¶
-
KEY_VAULT
= 'KeyVault'¶
-
KEY_VAULT_PARAMETER_NAME
= 'vaults'¶
-
LOCATION_PARAMETER_NAME
= 'location'¶
-
MODEL_PARAMETER_NAME
= 'models'¶
-
MODEL_RESOURCE_NAME
= 'modelDeploymentCopy'¶
-
MODEL_TYPE
= 'model'¶
-
MODEL_VERSION_PARAMETER_NAME
= 'modelVersions'¶
-
MODEL_VERSION_RESOURCE_NAME
= 'modelVersionDeploymentCopy'¶
-
MODEL_VERSION_TYPE
= 'model_version'¶
-
NAME
= 'name'¶
-
OBJECT
= 'Object'¶
-
ONLINE_DEPLOYMENT_RESOURCE_NAME
= 'onlineDeploymentCopy'¶
-
ONLINE_DEPLOYMENT_TYPE
= 'online_deployment'¶
-
ONLINE_ENDPOINT_RESOURCE_NAME
= 'onlineEndpointCopy'¶
-
ONLINE_ENDPOINT_TYPE
= 'online_endpoint'¶
-
OPERATION_CREATE
= 'create'¶
-
OPERATION_UPDATE
= 'update'¶
-
PROPERTIES_PARAMETER_NAME
= 'properties'¶
-
SKU
= 'sku'¶
-
STORAGE
= 'StorageAccount'¶
-
STORAGE_ACCOUNT_PARAMETER_NAME
= 'storageAccounts'¶
-
STRING
= 'String'¶
-
TAGS
= 'tags'¶
-
TRAFFIC_PARAMETER_NAME
= 'trafficRules'¶
-
UPDATE_ONLINE_ENDPOINT_TYPE
= 'update_online_endpoint'¶
-
UPDATE_RESOURCE_NAME
= 'updateEndpointWithTraffic'¶
-
VERSION
= 'version'¶
-
WORKSPACE
= 'Workspace'¶
-
WORKSPACE_BASE
= 'workspace_base'¶
-
WORKSPACE_PARAM
= 'workspace_param'¶
-
WORKSPACE_PARAMETER_NAME
= 'workspaceName'¶
-
-
class
azure.ai.ml.constants.
AssetTypes
[source]¶ -
CUSTOM_MODEL
= 'custom_model'¶
-
MLFLOW_MODEL
= 'mlflow_model'¶
-
MLTABLE
= 'mltable'¶
-
TRITON_MODEL
= 'triton_model'¶
-
URI_FILE
= 'uri_file'¶
-
URI_FOLDER
= 'uri_folder'¶
-
-
class
azure.ai.ml.constants.
AutoMLConstants
[source]¶ -
ALLOWED_ALGORITHMS_YAML
= 'allowed_training_algorithms'¶
-
AUTO
= 'auto'¶
-
BLOCKED_ALGORITHMS_YAML
= 'blocked_training_algorithms'¶
-
CLASSIFICATION_YAML
= 'classification'¶
-
COUNTRY_OR_REGION_YAML
= 'country_or_region_for_holidays'¶
-
CUSTOM
= 'custom'¶
-
DATASET_YAML
= 'dataset'¶
-
DATA_YAML
= 'data'¶
-
ENSEMBLE_MODEL_DOWNLOAD_TIMEOUT_YAML
= 'ensemble_model_download_timeout_minutes'¶
-
FEATURIZATION_YAML
= 'featurization'¶
-
FORECASTING_YAML
= 'forecasting'¶
-
GENERAL_YAML
= 'general'¶
-
LIMITS_YAML
= 'limits'¶
-
MAX_TRIALS_YAML
= 'max_trials'¶
-
MODE
= 'mode'¶
-
OFF
= 'off'¶
-
REGRESSION_YAML
= 'regression'¶
-
SWEEP_YAML
= 'sweep'¶
-
TARGET_LAGS
= 'target_lags'¶
-
TASK_TYPE_YAML
= 'task'¶
-
TERMINATION_POLICY_TYPE_YAML
= 'type'¶
-
TEST_DATA_SETTINGS_YAML
= 'test'¶
-
TIMEOUT_YAML
= 'timeout_minutes'¶
-
TIME_SERIES_ID_COLUMN_NAMES
= 'time_series_id_column_names'¶
-
TRAINING_DATA_SETTINGS_YAML
= 'training'¶
-
TRAINING_YAML
= 'training'¶
-
TRANSFORMER_PARAMS
= 'transformer_params'¶
-
TRIAL_TIMEOUT_YAML
= 'trial_timeout_minutes'¶
-
VALIDATION_DATASET_SIZE_YAML
= 'validation_dataset_size'¶
-
VALIDATION_DATA_SETTINGS_YAML
= 'validation'¶
-
-
class
azure.ai.ml.constants.
AzureMLResourceType
[source]¶ -
BATCH_DEPLOYMENT
= 'batch_deployments'¶
-
BATCH_ENDPOINT
= 'batch_endpoints'¶
-
CODE
= 'codes'¶
-
COMPONENT
= 'components'¶
-
COMPUTE
= 'computes'¶
-
DATA
= 'data'¶
-
DATASET
= 'datasets'¶
-
DATASTORE
= 'datastores'¶
-
DEPLOYMENT
= 'deployments'¶
-
ENVIRONMENT
= 'environments'¶
-
JOB
= 'jobs'¶
-
MODEL
= 'models'¶
-
NAMED_TYPES
= {'computes', 'datastores', 'jobs', 'online_deployments', 'online_endpoints', 'workspaces'}¶
-
ONLINE_DEPLOYMENT
= 'online_deployments'¶
-
ONLINE_ENDPOINT
= 'online_endpoints'¶
-
VERSIONED_TYPES
= {'codes', 'components', 'data', 'datasets', 'environments', 'models'}¶
-
VIRTUALCLUSTER
= 'virtualclusters'¶
-
WORKSPACE
= 'workspaces'¶
-
WORKSPACE_CONNECTION
= 'workspace_connections'¶
-
-
class
azure.ai.ml.constants.
BatchDeploymentOutputAction
[source]¶ -
APPEND_ROW
= 'append_row'¶
-
SUMMARY_ONLY
= 'summary_only'¶
-
-
class
azure.ai.ml.constants.
ComponentJobConstants
[source]¶ -
INPUT_DESTINATION_FORMAT
= 'jobs.{}.inputs.{}'¶
-
INPUT_PATTERN
= '^\\$\\{\\{parent\\.(inputs|jobs)\\.(.*?)\\}\\}$'¶
-
LEGACY_INPUT_PATTERN
= '^\\$\\{\\{(inputs|jobs)\\.(.*?)\\}\\}$'¶
-
LEGACY_OUTPUT_PATTERN
= '^\\$\\{\\{outputs\\.(.*?)\\}\\}$'¶
-
OUTPUT_DESTINATION_FORMAT
= 'jobs.{}.outputs.{}'¶
-
OUTPUT_PATTERN
= '^\\$\\{\\{parent\\.outputs\\.(.*?)\\}\\}$'¶
-
-
class
azure.ai.ml.constants.
ComponentSource
[source]¶ Indicate where the component is constructed.
-
BUILDER
= 'BUILDER'¶
-
DSL
= 'DSL'¶
-
REST
= 'REST'¶
-
SDK
= 'SDK'¶
-
YAML
= 'YAML'¶
-
-
class
azure.ai.ml.constants.
ComputeDefaults
[source]¶ -
ADMIN_USER
= 'azureuser'¶
-
IDLE_TIME
= 1800¶
-
MAX_NODES
= 4¶
-
MIN_NODES
= 0¶
-
PRIORITY
= 'Dedicated'¶
-
VMSIZE
= 'STANDARD_DS3_V2'¶
-
-
class
azure.ai.ml.constants.
ComputeTier
[source]¶ -
DEDICATED
= 'dedicated'¶
-
LOWPRIORITY
= 'low_priority'¶
-
-
class
azure.ai.ml.constants.
ComputeType
[source]¶ -
AMLCOMPUTE
= 'amlcompute'¶
-
COMPUTEINSTANCE
= 'computeinstance'¶
-
KUBERNETES
= 'kubernetes'¶
-
MANAGED
= 'managed'¶
-
VIRTUALMACHINE
= 'virtualmachine'¶
-
-
class
azure.ai.ml.constants.
DistributionType
[source]¶ -
MPI
= 'mpi'¶
-
PYTORCH
= 'pytorch'¶
-
TENSORFLOW
= 'tensorflow'¶
-
-
class
azure.ai.ml.constants.
EndpointDeploymentLogContainerType
[source]¶ -
INFERENCE_SERVER
= 'inference-server'¶
-
INFERENCE_SERVER_REST
= 'InferenceServer'¶
-
STORAGE_INITIALIZER
= 'storage-initializer'¶
-
STORAGE_INITIALIZER_REST
= 'StorageInitializer'¶
-
-
class
azure.ai.ml.constants.
EndpointInvokeFields
[source]¶ -
AUTHORIZATION
= 'Authorization'¶
-
DEFAULT_HEADER
= {'Content-Type': 'application/json'}¶
-
MODEL_DEPLOYMENT
= 'azureml-model-deployment'¶
-
-
class
azure.ai.ml.constants.
EndpointKeyType
[source]¶ -
PRIMARY_KEY_TYPE
= 'primary'¶
-
SECONDARY_KEY_TYPE
= 'secondary'¶
-
-
class
azure.ai.ml.constants.
EndpointYamlFields
[source]¶ -
BATCH_JOB_DATASET
= 'dataset'¶
-
BATCH_JOB_INPUT_DATA
= 'input_data'¶
-
BATCH_JOB_INSTANCE_COUNT
= 'compute.instance_count'¶
-
BATCH_JOB_NAME
= 'job_name'¶
-
BATCH_JOB_OUTPUT_DATSTORE
= 'output_dataset.datastore_id'¶
-
BATCH_JOB_OUTPUT_PATH
= 'output_dataset.path'¶
-
CODE
= 'code'¶
-
CODE_CONFIGURATION
= 'code_configuration'¶
-
COMPUTE
= 'compute'¶
-
INSTANCE_COUNT
= 'instance_count'¶
-
MAXIMUM
= 'max_instances'¶
-
MINIMUM
= 'min_instances'¶
-
MINI_BATCH_SIZE
= 'mini_batch_size'¶
-
NAME
= 'name'¶
-
POLLING_INTERVAL
= 'polling_interval'¶
-
PROVISIONING_STATE
= 'provisioning_state'¶
-
RETRY_SETTINGS
= 'retry_settings'¶
-
SCALE_SETTINGS
= 'scale_settings'¶
-
SCALE_TYPE
= 'scale_type'¶
-
SCORING_SCRIPT
= 'scoring_script'¶
-
SCORING_URI
= 'scoring_uri'¶
-
SKU_DEFAULT
= 'Standard_F4s_v2'¶
-
SWAGGER_URI
= 'swagger_uri'¶
-
TARGET_UTILIZATION_PERCENTAGE
= 'target_utilization_percentage'¶
-
TRAFFIC_NAME
= 'traffic'¶
-
TYPE
= 'type'¶
-
-
class
azure.ai.ml.constants.
GitProperties
[source]¶ -
ENV_BRANCH
= 'AZUREML_GIT_BRANCH'¶
-
ENV_BUILD_ID
= 'AZUREML_GIT_BUILD_ID'¶
-
ENV_BUILD_URI
= 'AZUREML_GIT_BUILD_URI'¶
-
ENV_COMMIT
= 'AZUREML_GIT_COMMIT'¶
-
ENV_DIRTY
= 'AZUREML_GIT_DIRTY'¶
-
ENV_REPOSITORY_URI
= 'AZUREML_GIT_REPOSITORY_URI'¶
-
PROP_BUILD_ID
= 'azureml.git.build_id'¶
-
PROP_BUILD_URI
= 'azureml.git.build_uri'¶
-
PROP_DIRTY
= 'azureml.git.dirty'¶
-
PROP_MLFLOW_GIT_BRANCH
= 'mlflow.source.git.branch'¶
-
PROP_MLFLOW_GIT_COMMIT
= 'mlflow.source.git.commit'¶
-
PROP_MLFLOW_GIT_REPO_URL
= 'mlflow.source.git.repoURL'¶
-
-
class
azure.ai.ml.constants.
IdentityType
[source]¶ -
BOTH
= 'system_assigned,user_assigned'¶
-
SYSTEM_ASSIGNED
= 'system_assigned'¶
-
USER_ASSIGNED
= 'user_assigned'¶
-
-
class
azure.ai.ml.constants.
InputOutputModes
[source]¶ -
DIRECT
= 'direct'¶
-
DOWNLOAD
= 'download'¶
-
EVAL_DOWNLOAD
= 'eval_download'¶
-
EVAL_MOUNT
= 'eval_mount'¶
-
MOUNT
= 'mount'¶
-
RO_MOUNT
= 'ro_mount'¶
-
RW_MOUNT
= 'rw_mount'¶
-
UPLOAD
= 'upload'¶
-
-
class
azure.ai.ml.constants.
JobComputePropertyFields
[source]¶ -
AISUPERCOMPUTER
= 'AISuperComputer'¶
-
SINGULARITY
= 'Singularity'¶
-
-
class
azure.ai.ml.constants.
JobLogPattern
[source]¶ -
COMMAND_JOB_LOG_PATTERN
= 'azureml-logs/[\\d]{2}.+\\.txt'¶
-
COMMON_RUNTIME_ALL_USER_LOG_PATTERN
= 'user_logs/std_log.*\\.txt'¶
-
COMMON_RUNTIME_STREAM_LOG_PATTERN
= 'user_logs/std_log[\\D]*[0]*(?:_ps)?\\.txt'¶
-
PIPELINE_JOB_LOG_PATTERN
= 'logs/azureml/executionlogs\\.txt'¶
-
SWEEP_JOB_LOG_PATTERN
= 'azureml-logs/hyperdrive\\.txt'¶
-
-
class
azure.ai.ml.constants.
JobType
[source]¶ -
AUTOML
= 'automl'¶
-
BASE
= 'base'¶
-
COMMAND
= 'command'¶
-
COMPONENT
= 'component'¶
-
PARALLEL
= 'parallel'¶
-
PIPELINE
= 'pipeline'¶
-
SWEEP
= 'sweep'¶
-
-
class
azure.ai.ml.constants.
LROConfigurations
[source]¶ -
MAX_WAIT_COUNT
= 400¶
-
POLLING_TIMEOUT
= 720¶
-
POLL_INTERVAL
= 5¶
-
SLEEP_TIME
= 5¶
-
-
class
azure.ai.ml.constants.
LocalEndpointConstants
[source]¶ -
AZUREML_APP_PATH
= '/var/azureml-app/'¶
-
CONDA_ENV_BIN_PATH
= '/opt/miniconda/envs/inf-conda-env/bin'¶
-
CONDA_ENV_NAME
= 'inf-conda-env'¶
-
CONDA_ENV_PYTHON_PATH
= '/opt/miniconda/envs/inf-conda-env/bin/python'¶
-
CONDA_FILE_NAME
= 'conda.yml'¶
-
CONTAINER_EXITED
= 'exited'¶
-
DEFAULT_STARTUP_WAIT_TIME_SECONDS
= 15¶
-
DOCKER_PORT
= '5001'¶
-
ENDPOINT_STATE_FAILED
= 'Failed'¶
-
ENDPOINT_STATE_LOCATION
= 'local'¶
-
ENDPOINT_STATE_SUCCEEDED
= 'Succeeded'¶
-
ENVVAR_KEY_AML_APP_ROOT
= 'AML_APP_ROOT'¶
-
ENVVAR_KEY_AZUREML_ENTRY_SCRIPT
= 'AZUREML_ENTRY_SCRIPT'¶
-
ENVVAR_KEY_AZUREML_INFERENCE_PYTHON_PATH
= 'AZUREML_INFERENCE_PYTHON_PATH'¶
-
ENVVAR_KEY_AZUREML_MODEL_DIR
= 'AZUREML_MODEL_DIR'¶
-
LABEL_KEY_AZUREML_LOCAL_ENDPOINT
= 'azureml-local-endpoint'¶
-
LABEL_KEY_AZUREML_PORT
= 'azureml-port'¶
-
LABEL_KEY_DEPLOYMENT_JSON
= 'deployment-data'¶
-
LABEL_KEY_DEPLOYMENT_NAME
= 'deployment'¶
-
LABEL_KEY_ENDPOINT_JSON
= 'endpoint-data'¶
-
LABEL_KEY_ENDPOINT_NAME
= 'endpoint'¶
-
-
class
azure.ai.ml.constants.
ModelType
[source]¶ -
CUSTOM
= 'CustomModel'¶
-
MLFLOW
= 'MLFlowModel'¶
-
TRITON
= 'TritonModel'¶
-
-
class
azure.ai.ml.constants.
NodeType
[source]¶ -
AUTOML
= 'automl'¶
-
COMMAND
= 'command'¶
-
PARALLEL
= 'parallel'¶
-
SWEEP
= 'sweep'¶
-
-
class
azure.ai.ml.constants.
OnlineEndpointConfigurations
[source]¶ -
MAX_NAME_LENGTH
= 32¶
-
MIN_NAME_LENGTH
= 3¶
-
NAME_REGEX_PATTERN
= '^[a-zA-Z]([-a-zA-Z0-9]*[a-zA-Z0-9])?$'¶
-
-
class
azure.ai.ml.constants.
OperationStatus
[source]¶ -
CANCELED
= 'Canceled'¶
-
FAILED
= 'Failed'¶
-
RUNNING
= 'Running'¶
-
SUCCEEDED
= 'Succeeded'¶
-
-
class
azure.ai.ml.constants.
OrderString
[source]¶ -
CREATED_AT
= 'createdtime asc'¶
-
CREATED_AT_DESC
= 'createdtime desc'¶
-
-
class
azure.ai.ml.constants.
PipelineConstants
[source]¶ -
CODE
= 'code'¶
-
CONTINUE_ON_STEP_FAILURE
= 'continue_on_step_failure'¶
-
DATASTORE_REST
= 'Datastore'¶
-
DEFAULT_COMPUTE
= 'default_compute'¶
-
DEFAULT_DATASTORE
= 'default_datastore'¶
-
DEFAULT_DATASTORE_REST
= 'defaultDatastoreName'¶
-
DEFAULT_DATASTORE_SDK
= 'default_datastore_name'¶
-
ENVIRONMENT
= 'environment'¶
-
REUSED_FLAG_FIELD
= 'azureml.isreused'¶
-
REUSED_FLAG_TRUE
= 'true'¶
-
REUSED_JOB_ID
= 'azureml.reusedrunid'¶
-
-
class
azure.ai.ml.constants.
PublicNetworkAccess
[source]¶ -
DISABLED
= 'Disabled'¶
-
ENABLED
= 'Enabled'¶
-
-
class
azure.ai.ml.constants.
SearchSpace
[source]¶ -
CHOICE
= 'choice'¶
-
LOGNORMAL
= 'lognormal'¶
-
LOGUNIFORM
= 'loguniform'¶
-
NORMAL
= 'normal'¶
-
NORMAL_LOGNORMAL
= ['normal', 'lognormal']¶
-
QLOGNORMAL
= 'qlognormal'¶
-
QLOGUNIFORM
= 'qloguniform'¶
-
QNORMAL
= 'qnormal'¶
-
QNORMAL_QLOGNORMAL
= ['qnormal', 'qlognormal']¶
-
QUNIFORM
= 'quniform'¶
-
QUNIFORM_QLOGUNIFORM
= ['quniform', 'qloguniform']¶
-
RANDINT
= 'randint'¶
-
UNIFORM
= 'uniform'¶
-
UNIFORM_LOGUNIFORM
= ['uniform', 'loguniform']¶
-
-
class
azure.ai.ml.constants.
TimeZone
(value)[source]¶ Time zones that a job or compute instance schedule accepts
-
AFGHANISTANA_STANDARD_TIME
= 'Afghanistan Standard Time'¶
-
ALASKAN_STANDARD_TIME
= 'Alaskan Standard Time'¶
-
ALEUTIAN_STANDARD_TIME
= 'Aleutian Standard Time'¶
-
ALTAI_STANDARD_TIME
= 'Altai Standard Time'¶
-
ARABIAN_STANDARD_TIME
= 'Arabian Standard Time'¶
-
ARABIC_STANDARD_TIME
= 'Arabic Standard Time'¶
-
ARAB_STANDARD_TIME
= 'Arab Standard Time'¶
-
ARGENTINA_STANDARD_TIME
= 'Argentina Standard Time'¶
-
ASTRAKHAN_STANDARD_TIME
= 'Astrakhan Standard Time'¶
-
ATLANTIC_STANDARD_TIME
= 'Atlantic Standard Time'¶
-
AUS_CENTRAL_STANDARD_TIME
= 'AUS Central Standard Time'¶
-
AUS_CENTRAL_W_STANDARD_TIME
= 'Aus Central W. Standard Time'¶
-
AUS_EASTERN_STANDARD_TIME
= 'AUS Eastern Standard Time'¶
-
AZERBAIJAN_STANDARD_TIME
= 'Azerbaijan Standard Time'¶
-
AZORES_STANDARD_TIME
= 'Azores Standard Time'¶
-
BAHIA_STANDARD_TIME
= 'Bahia Standard Time'¶
-
BANGLADESH_STANDARD_TIME
= 'Bangladesh Standard Time'¶
-
BELARUS_STANDARD_TIME
= 'Belarus Standard Time'¶
-
BOUGAINVILLE_STANDARD_TIME
= 'Bougainville Standard Time'¶
-
CANADA_CENTRAL_STANDARD_TIME
= 'Canada Central Standard Time'¶
-
CAPE_VERDE_STANDARD_TIME
= 'Cape Verde Standard Time'¶
-
CAUCASUS_STANDARD_TIME
= 'Caucasus Standard Time'¶
-
CENTRAL_AMERICA_STANDARD_TIME
= 'Central America Standard Time'¶
-
CENTRAL_ASIA_STANDARD_TIME
= 'Central Asia Standard Time'¶
-
CENTRAL_BRAZILIAN_STANDARD_TIME
= 'Central Brazilian Standard Time'¶
-
CENTRAL_EUROPEAN_STANDARD_TIME
= 'Central European Standard Time'¶
-
CENTRAL_EUROPE_STANDARD_TIME
= 'Central Europe Standard Time'¶
-
CENTRAL_PACIFIC_STANDARD_TIME
= 'Central Pacific Standard Time'¶
-
CENTRAL_STANDARD_TIME
= 'Central Standard Time'¶
-
CENTRAL_STANDARD_TIME_MEXICO
= 'Central Standard Time (Mexico)'¶
-
CEN_AUSTRALIA_STANDARD_TIME
= 'Cen. Australia Standard Time'¶
-
CHATHAM_ISLANDS_STANDARD_TIME
= 'Chatham Islands Standard Time'¶
-
CHINA_STANDARD_TIME
= 'China Standard Time'¶
-
CUBA_STANDARD_TIME
= 'Cuba Standard Time'¶
-
DATELINE_STANDARD_TIME
= 'Dateline Standard Time'¶
-
EASTERN_STANDARD_TIME
= 'Eastern Standard Time'¶
-
EASTERN_STANDARD_TIME_MEXICO
= 'Eastern Standard Time (Mexico)'¶
-
EASTER_ISLAND_STANDARD_TIME
= 'Easter Island Standard Time'¶
-
EGYPT_STANDARD_TIME
= 'Egypt Standard Time'¶
-
EKATERINBURG_STANDARD_TIME
= 'Ekaterinburg Standard Time'¶
-
E_AFRICA_STANDARD_TIME
= 'E. Africa Standard Time'¶
-
E_AUSTRALIAN_STANDARD_TIME
= 'E. Australia Standard Time'¶
-
E_EUROPE_STANDARD_TIME
= 'E. Europe Standard Time'¶
-
E_SOUTH_AMERICAN_STANDARD_TIME
= 'E. South America Standard Time'¶
-
FIJI_STANDARD_TIME
= 'Fiji Standard Time'¶
-
FLE_STANDARD_TIME
= 'FLE Standard Time'¶
-
GEORGIAN_STANDARD_TIME
= 'Georgian Standard Time'¶
-
GMT_STANDARD_TIME
= 'GMT Standard Time'¶
-
GREENLAND_STANDARD_TIME
= 'Greenland Standard Time'¶
-
GREENWICH_STANDARD_TIME
= 'Greenwich Standard Time'¶
-
GTB_STANDARD_TIME
= 'GTB Standard Time'¶
-
HAITI_STANDARD_TIME
= 'Haiti Standard Time'¶
-
HAWAIIAN_STANDARD_TIME
= 'Hawaiian Standard Time'¶
-
INDIA_STANDARD_TIME
= 'India Standard Time'¶
-
IRAN_STANDARD_TIME
= 'Iran Standard Time'¶
-
ISRAEL_STANDARD_TIME
= 'Israel Standard Time'¶
-
JORDAN_STANDARD_TIME
= 'Jordan Standard Time'¶
-
KALININGRAD_STANDARD_TIME
= 'Kaliningrad Standard Time'¶
-
KAMCHATKA_STANDARD_TIME
= 'Kamchatka Standard Time'¶
-
KOREA_STANDARD_TIME
= 'Korea Standard Time'¶
-
LIBYA_STANDARD_TIME
= 'Libya Standard Time'¶
-
LINE_ISLANDS_STANDARD_TIME
= 'Line Islands Standard Time'¶
-
LORDE_HOWE_STANDARD_TIME
= 'Lord Howe Standard Time'¶
-
MAGADAN_STANDARD_TIME
= 'Magadan Standard Time'¶
-
MARQUESAS_STANDARD_TIME
= 'Marquesas Standard Time'¶
-
MAURITIUS_STANDARD_TIME
= 'Mauritius Standard Time'¶
-
MIDDLE_EAST_STANDARD_TIME
= 'Middle East Standard Time'¶
-
MID_ATLANTIC_STANDARD_TIME
= 'Mid-Atlantic Standard Time'¶
-
MONTEVIDEO_STANDARD_TIME
= 'Montevideo Standard Time'¶
-
MOROCCO_STANDARD_TIME
= 'Morocco Standard Time'¶
-
MOUNTAIN_STANDARD_TIME
= 'Mountain Standard Time'¶
-
MOUNTAIN_STANDARD_TIME_MEXICO
= 'Mountain Standard Time (Mexico)'¶
-
MYANMAR_STANDARD_TIME
= 'Myanmar Standard Time'¶
-
NAMIBIA_STANDARD_TIME
= 'Namibia Standard Time'¶
-
NEPAL_STANDARD_TIME
= 'Nepal Standard Time'¶
-
NEWFOUNDLAND_STANDARD_TIME
= 'Newfoundland Standard Time'¶
-
NEW_ZEALAND_STANDARD_TIME
= 'New Zealand Standard Time'¶
-
NORFOLK_STANDARD_TIME
= 'Norfolk Standard Time'¶
-
NORTH_ASIA_EAST_STANDARD_TIME
= 'North Asia East Standard Time'¶
-
NORTH_ASIA_STANDARD_TIME
= 'North Asia Standard Time'¶
-
NORTH_KOREA_STANDARD_TIME
= 'North Korea Standard Time'¶
-
N_CENTRAL_ASIA_STANDARD_TIME
= 'N. Central Asia Standard Time'¶
-
PACIFIC_SA_STANDARD_TIME
= 'Pacific SA Standard Time'¶
-
PACIFIC_STANDARD_TIME
= 'Pacific Standard Time'¶
-
PACIFIC_STANDARD_TIME_MEXICO
= 'Pacific Standard Time (Mexico)'¶
-
PAKISTAN_STANDARD_TIME
= 'Pakistan Standard Time'¶
-
PARAGUAY_STANDARD_TIME
= 'Paraguay Standard Time'¶
-
ROMANCE_STANDARD_TIME
= 'Romance Standard Time'¶
-
RUSSIAN_STANDARD_TIME
= 'Russian Standard Time'¶
-
RUSSIA_TIME_ZONE_10
= 'Russia Time Zone 10'¶
-
RUSSIA_TIME_ZONE_11
= 'Russia Time Zone 11'¶
-
RUSSIA_TIME_ZONE_3
= 'Russia Time Zone 3'¶
-
SAINT_PIERRE_STANDARD_TIME
= 'Saint Pierre Standard Time'¶
-
SAKHALIN_STANDARD_TIME
= 'Sakhalin Standard Time'¶
-
SAMOA_STANDARD_TIME
= 'Samoa Standard Time'¶
-
SA_EASTERN_STANDARD_TIME
= 'SA Eastern Standard Time'¶
-
SA_PACIFIC_STANDARD_TIME
= 'SA Pacific Standard Time'¶
-
SA_WESTERN_STANDARD_TIME
= 'SA Western Standard Time'¶
-
SE_ASIA_STANDARD_TIME
= 'SE Asia Standard Time'¶
-
SINGAPORE_STANDARD_TIME
= 'Singapore Standard Time'¶
-
SOUTH_AFRICA_STANDARD_TIME
= 'South Africa Standard Time'¶
-
SRI_LANKA_STANDARD_TIME
= 'Sri Lanka Standard Time'¶
-
SYRIA_STANDARD_TIME
= 'Syria Standard Time'¶
-
TAIPEI_STANDARD_TIME
= 'Taipei Standard Time'¶
-
TASMANIA_STANDARD_TIME
= 'Tasmania Standard Time'¶
-
TOCANTINS_STANDARD_TIME
= 'Tocantins Standard Time'¶
-
TOKYO_STANDARD_TIME
= 'Tokyo Standard Time'¶
-
TOMSK_STANDARD_TIME
= 'Tomsk Standard Time'¶
-
TONGA__STANDARD_TIME
= 'Tonga Standard Time'¶
-
TRANSBAIKAL_STANDARD_TIME
= 'Transbaikal Standard Time'¶
-
TURKEY_STANDARD_TIME
= 'Turkey Standard Time'¶
-
TURKS_AND_CAICOS_STANDARD_TIME
= 'Turks And Caicos Standard Time'¶
-
ULAANBAATAR_STANDARD_TIME
= 'Ulaanbaatar Standard Time'¶
-
US_EASTERN_STANDARD_TIME
= 'US Eastern Standard Time'¶
-
US_MOUNTAIN_STANDARD_TIME
= 'US Mountain Standard Time'¶
-
UTC
= 'UTC'¶
-
UTC_02
= 'UTC-02'¶
-
UTC_08
= 'UTC-08'¶
-
UTC_09
= 'UTC-09'¶
-
UTC_11
= 'UTC-11'¶
-
UTC_12
= 'UTC+12'¶
-
VLADIVOSTOK_STANDARD_TIME
= 'Vladivostok Standard Time'¶
-
VenezuelaStandardTime
= 'Venezuela Standard Time'¶
-
WEST_ASIA_STANDARD_TIME
= 'West Asia Standard Time'¶
-
WEST_BANK_STANDARD_TIME
= 'West Bank Standard Time'¶
-
WEST_PACIFIC_STANDARD_TIME
= 'West Pacific Standard Time'¶
-
W_AUSTRALIA_STANDARD_TIME
= 'W. Australia Standard Time'¶
-
W_CENTEAL_AFRICA_STANDARD_TIME
= 'W. Central Africa Standard Time'¶
-
W_EUROPE_STANDARD_TIME
= 'W. Europe Standard Time'¶
-
W_MONGOLIA_STANDARD_TIME
= 'W. Mongolia Standard Time'¶
-
YAKUTSK_STANDARD_TIME
= 'Yakutsk Standard Time'¶
-
-
class
azure.ai.ml.constants.
WorkspaceResourceConstants
[source]¶ -
ENCRYPTION_STATUS_ENABLED
= 'Enabled'¶
-
-
class
azure.ai.ml.constants.
YAMLRefDocLinks
[source]¶ -
AML_COMPUTE
= 'https://aka.ms/ml-cli-v2-compute-aml-yaml-reference'¶
-
BATCH_DEPLOYMENT
= 'https://aka.ms/ml-cli-v2-deployment-batch-yaml-reference'¶
-
BATCH_ENDPOINT
= 'https://aka.ms/ml-cli-v2-endpoint-batch-yaml-reference'¶
-
COMMAND_COMPONENT
= 'https://aka.ms/ml-cli-v2-component-command-yaml-reference'¶
-
COMMAND_JOB
= 'https://aka.ms/ml-cli-v2-job-command-yaml-reference'¶
-
COMPUTE_INSTANCE
= 'https://aka.ms/ml-cli-v2-compute-aml-yaml-reference'¶
-
DATA
= 'https://aka.ms/ml-cli-v2-data-yaml-reference'¶
-
DATASET
= 'https://aka.ms/ml-cli-v2-dataset-yaml-reference'¶
-
DATASTORE_BLOB
= 'https://aka.ms/ml-cli-v2-datastore-blob-yaml-reference'¶
-
DATASTORE_DATA_LAKE_GEN_1
= 'https://aka.ms/ml-cli-v2-datastore-data-lake-gen1-yaml-reference'¶
-
DATASTORE_DATA_LAKE_GEN_2
= 'https://aka.ms/ml-cli-v2-datastore-data-lake-gen2-yaml-reference'¶
-
DATASTORE_FILE
= 'https://aka.ms/ml-cli-v2-datastore-file-yaml-reference'¶
-
ENVIRONMENT
= 'https://aka.ms/ml-cli-v2-environment-yaml-reference'¶
-
KUBERNETES_ONLINE_DEPLOYMENT
= 'https://aka.ms/ml-cli-v2-deployment-kubernetes-online-yaml-reference'¶
-
MANAGED_ONLINE_DEPLOYMENT
= 'https://aka.ms/ml-cli-v2-deployment-managed-online-yaml-reference'¶
-
MODEL
= 'https://aka.ms/ml-cli-v2-model-yaml-reference'¶
-
ONLINE_ENDPOINT
= 'https://aka.ms/ml-cli-v2-endpoint-online-yaml-reference'¶
-
PARALLEL_COMPONENT
= 'https://aka.ms/ml-cli-v2-component-parallel-yaml-reference'¶
-
PARALLEL_JOB
= 'https://aka.ms/ml-cli-v2-job-parallel-yaml-reference'¶
-
PIPELINE_JOB
= 'https://aka.ms/ml-cli-v2-job-pipeline-yaml-reference'¶
-
SWEEP_JOB
= 'https://aka.ms/ml-cli-v2-job-sweep-yaml-reference'¶
-
VIRTUAL_MACHINE_COMPUTE
= 'https://aka.ms/ml-cli-v2-compute-vm-yaml-reference'¶
-
WORKSPACE
= 'https://aka.ms/ml-cli-v2-workspace-yaml-reference'¶
-
-
class
azure.ai.ml.constants.
YAMLRefDocSchemaNames
[source]¶ -
AML_COMPUTE
= 'AMLCompute'¶
-
BATCH_DEPLOYMENT
= 'BatchDeployment'¶
-
BATCH_ENDPOINT
= 'BatchEndpoint'¶
-
COMMAND_COMPONENT
= 'CommandComponent'¶
-
COMMAND_JOB
= 'CommandJob'¶
-
COMPUTE_INSTANCE
= 'ComputeInstance'¶
-
DATA
= 'Data'¶
-
DATASET
= 'Dataset'¶
-
DATASTORE_BLOB
= 'AzureBlobDatastore'¶
-
DATASTORE_DATA_LAKE_GEN_1
= 'AzureDataLakeGen1Datastore'¶
-
DATASTORE_DATA_LAKE_GEN_2
= 'AzureDataLakeGen2Datastore'¶
-
DATASTORE_FILE
= 'AzureFileDatastore'¶
-
ENVIRONMENT
= 'Environment'¶
-
KUBERNETES_ONLINE_DEPLOYMENT
= 'KubernetesOnlineDeployment'¶
-
MANAGED_ONLINE_DEPLOYMENT
= 'ManagedOnlineDeployment'¶
-
MODEL
= 'Model'¶
-
ONLINE_ENDPOINT
= 'OnlineEndpoint'¶
-
PARALLEL_COMPONENT
= 'ParallelComponent'¶
-
PARALLEL_JOB
= 'ParallelJob'¶
-
PIPELINE_JOB
= 'PipelineJob'¶
-
SWEEP_JOB
= 'SweepJob'¶
-
VIRTUAL_MACHINE_COMPUTE
= 'VirtualMachineCompute'¶
-
WORKSPACE
= 'Workspace'¶
-