azure.ai.formrecognizer package¶
-
class
azure.ai.formrecognizer.
AccountProperties
(**kwargs: Any)[source]¶ Summary of all the custom models on the account.
New in version v2.1: Support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.AccountProperties[source]¶ Converts a dict in the shape of a AccountProperties to the model itself.
- Parameters
data (dict) – A dictionary in the shape of AccountProperties.
- Returns
AccountProperties
- Return type
-
classmethod
-
class
azure.ai.formrecognizer.
AddressValue
(**kwargs: Any)[source]¶ An address field value.
New in version 2023-07-31: The unit, city_district, state_district, suburb, house, and level properties.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.AddressValue[source]¶ Converts a dict in the shape of a AddressValue to the model itself.
- Parameters
data (dict) – A dictionary in the shape of AddressValue.
- Returns
AddressValue
- Return type
-
city_district
: Optional[str]¶ Districts or boroughs within a city, such as Brooklyn in New York City or City of Westminster in London.
-
classmethod
-
class
azure.ai.formrecognizer.
AnalysisFeature
(value)[source]¶ Document analysis features to enable.
-
BARCODES
= 'barcodes'¶ Enable the detection of barcodes in the document.
-
FORMULAS
= 'formulas'¶ Enable the detection of mathematical expressions in the document.
-
KEY_VALUE_PAIRS
= 'keyValuePairs'¶ Enable the detection of general key value pairs (form fields) in the document.
-
LANGUAGES
= 'languages'¶ Enable the detection of the text content language.
-
OCR_HIGH_RESOLUTION
= 'ocrHighResolution'¶ Perform OCR at a higher resolution to handle documents with fine print.
-
STYLE_FONT
= 'styleFont'¶ Enable the recognition of various font styles.
-
-
class
azure.ai.formrecognizer.
AnalyzeResult
(**kwargs: Any)[source]¶ Document analysis result.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.AnalyzeResult[source]¶ Converts a dict in the shape of a AnalyzeResult to the model itself.
- Parameters
data (dict) – A dictionary in the shape of AnalyzeResult.
- Returns
AnalyzeResult
- Return type
-
content
: str¶ Concatenate string representation of all textual and visual elements in reading order.
-
documents
: Optional[List[azure.ai.formrecognizer._models.AnalyzedDocument]]¶ Extracted documents.
-
key_value_pairs
: Optional[List[azure.ai.formrecognizer._models.DocumentKeyValuePair]]¶ Extracted key-value pairs.
-
languages
: Optional[List[azure.ai.formrecognizer._models.DocumentLanguage]]¶ Detected languages in the document.
-
pages
: List[azure.ai.formrecognizer._models.DocumentPage]¶ Analyzed pages.
-
paragraphs
: Optional[List[azure.ai.formrecognizer._models.DocumentParagraph]]¶ Extracted paragraphs.
-
styles
: Optional[List[azure.ai.formrecognizer._models.DocumentStyle]]¶ Extracted font styles.
-
tables
: Optional[List[azure.ai.formrecognizer._models.DocumentTable]]¶ Extracted tables.
-
classmethod
-
class
azure.ai.formrecognizer.
AnalyzedDocument
(**kwargs: Any)[source]¶ An object describing the location and semantic content of a document.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.AnalyzedDocument[source]¶ Converts a dict in the shape of a AnalyzedDocument to the model itself.
- Parameters
data (dict) – A dictionary in the shape of AnalyzedDocument.
- Returns
AnalyzedDocument
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of AnalyzedDocument.
- Returns
dict
- Return type
-
bounding_regions
: Optional[List[azure.ai.formrecognizer._models.BoundingRegion]]¶ Bounding regions covering the document.
-
fields
: Optional[Dict[str, azure.ai.formrecognizer._models.DocumentField]]¶ A dictionary of named field values.
-
spans
: List[azure.ai.formrecognizer._models.DocumentSpan]¶ The location of the document in the reading order concatenated content.
-
classmethod
-
class
azure.ai.formrecognizer.
BlobFileListSource
(container_url: str, file_list: str)[source]¶ Content source for a file list in Azure Blob Storage.
-
classmethod
from_dict
(data: Dict[str, Any]) → azure.ai.formrecognizer._models.BlobFileListSource[source]¶ Converts a dict in the shape of a BlobFileListSource to the model itself.
- Parameters
data (dict) – A dictionary in the shape of BlobFileListSource.
- Returns
BlobFileListSource
- Return type
-
classmethod
-
class
azure.ai.formrecognizer.
BlobSource
(container_url: str, *, prefix: Optional[str] = None)[source]¶ Content source for Azure Blob Storage.
-
classmethod
from_dict
(data: Dict[str, Any]) → azure.ai.formrecognizer._models.BlobSource[source]¶ Converts a dict in the shape of a BlobSource to the model itself.
- Parameters
data (dict) – A dictionary in the shape of BlobSource.
- Returns
BlobSource
- Return type
-
classmethod
-
class
azure.ai.formrecognizer.
BoundingRegion
(**kwargs: Any)[source]¶ The bounding region corresponding to a page.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.BoundingRegion[source]¶ Converts a dict in the shape of a BoundingRegion to the model itself.
- Parameters
data (dict) – A dictionary in the shape of BoundingRegion.
- Returns
BoundingRegion
- Return type
-
polygon
: Sequence[azure.ai.formrecognizer._models.Point]¶ A list of points representing the bounding polygon that outlines the document component. The points are listed in clockwise order relative to the document component orientation starting from the top-left. Units are in pixels for images and inches for PDF.
-
classmethod
-
class
azure.ai.formrecognizer.
ClassifierDocumentTypeDetails
(source: Union[azure.ai.formrecognizer._models.BlobSource, azure.ai.formrecognizer._models.BlobFileListSource])[source]¶ Training data source.
-
classmethod
from_dict
(data: Dict[str, Any]) → azure.ai.formrecognizer._models.ClassifierDocumentTypeDetails[source]¶ Converts a dict in the shape of a ClassifierDocumentTypeDetails to the model itself.
- Parameters
data (dict) – A dictionary in the shape of ClassifierDocumentTypeDetails.
- Returns
ClassifierDocumentTypeDetails
- Return type
-
to_dict
() → Dict[str, Any][source]¶ Returns a dict representation of ClassifierDocumentTypeDetails.
- Returns
Dict[str, Any]
- Return type
Dict[str, Any]
-
source
: Union[azure.ai.formrecognizer._models.BlobSource, azure.ai.formrecognizer._models.BlobFileListSource]¶ Content source containing the training data.
-
source_kind
: typing_extensions.Literal[azureBlob, azureBlobFileList]¶ “azureBlob” and “azureBlobFileList”.
- Type
Type of training data source, known values are
-
classmethod
-
class
azure.ai.formrecognizer.
CurrencyValue
(**kwargs: Any)[source]¶ A currency value element.
New in version 2023-07-31: The code property.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.CurrencyValue[source]¶ Converts a dict in the shape of a CurrencyValue to the model itself.
- Parameters
data (dict) – A dictionary in the shape of CurrencyValue.
- Returns
CurrencyValue
- Return type
-
classmethod
-
class
azure.ai.formrecognizer.
CustomDocumentModelsDetails
(**kwargs: Any)[source]¶ Details regarding the custom models under the Form Recognizer resource.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.CustomDocumentModelsDetails[source]¶ Converts a dict in the shape of a CustomDocumentModelsDetails to the model itself.
- Parameters
data (dict) – A dictionary in the shape of CustomDocumentModelsDetails.
- Returns
CustomDocumentModelsDetails
- Return type
-
classmethod
-
class
azure.ai.formrecognizer.
CustomFormModel
(**kwargs: Any)[source]¶ Represents a trained model.
New in version v2.1: The model_name and properties properties, support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.CustomFormModel[source]¶ Converts a dict in the shape of a CustomFormModel to the model itself.
- Parameters
data (dict) – A dictionary in the shape of CustomFormModel.
- Returns
CustomFormModel
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of CustomFormModel.
- Returns
dict
- Return type
-
errors
: List[azure.ai.formrecognizer._models.FormRecognizerError]¶ List of any training errors.
-
properties
: azure.ai.formrecognizer._models.CustomFormModelProperties¶ Optional model properties.
-
status
: str¶ Status indicating the model’s readiness for use,
CustomFormModelStatus
. Possible values include: ‘creating’, ‘ready’, ‘invalid’.
-
submodels
: List[azure.ai.formrecognizer._models.CustomFormSubmodel]¶ A list of submodels that are part of this model, each of which can recognize and extract fields from a different type of form.
-
training_completed_on
: datetime.datetime¶ Date and time (UTC) when model training completed.
-
training_documents
: List[azure.ai.formrecognizer._models.TrainingDocumentInfo]¶ Metadata about each of the documents used to train the model.
-
training_started_on
: datetime.datetime¶ The date and time (UTC) when model training was started.
-
classmethod
-
class
azure.ai.formrecognizer.
CustomFormModelField
(**kwargs: Any)[source]¶ A field that the model will extract from forms it analyzes.
New in version v2.1: Support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.CustomFormModelField[source]¶ Converts a dict in the shape of a CustomFormModelField to the model itself.
- Parameters
data (dict) – A dictionary in the shape of CustomFormModelField.
- Returns
CustomFormModelField
- Return type
-
classmethod
-
class
azure.ai.formrecognizer.
CustomFormModelInfo
(**kwargs: Any)[source]¶ Custom model information.
New in version v2.1: The model_name and properties properties, support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.CustomFormModelInfo[source]¶ Converts a dict in the shape of a CustomFormModelInfo to the model itself.
- Parameters
data (dict) – A dictionary in the shape of CustomFormModelInfo.
- Returns
CustomFormModelInfo
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of CustomFormModelInfo.
- Returns
dict
- Return type
-
properties
: azure.ai.formrecognizer._models.CustomFormModelProperties¶ Optional model properties.
-
status
: str¶ The status of the model,
CustomFormModelStatus
. Possible values include: ‘creating’, ‘ready’, ‘invalid’.
-
training_completed_on
: datetime.datetime¶ Date and time (UTC) when model training completed.
-
training_started_on
: datetime.datetime¶ Date and time (UTC) when model training was started.
-
classmethod
-
class
azure.ai.formrecognizer.
CustomFormModelProperties
(**kwargs: Any)[source]¶ Optional model properties.
New in version v2.1: Support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.CustomFormModelProperties[source]¶ Converts a dict in the shape of a CustomFormModelProperties to the model itself.
- Parameters
data (dict) – A dictionary in the shape of CustomFormModelProperties.
- Returns
CustomFormModelProperties
- Return type
-
classmethod
-
class
azure.ai.formrecognizer.
CustomFormModelStatus
(value)[source]¶ Status indicating the model’s readiness for use.
-
CREATING
= 'creating'¶
-
INVALID
= 'invalid'¶
-
READY
= 'ready'¶
-
-
class
azure.ai.formrecognizer.
CustomFormSubmodel
(**kwargs: Any)[source]¶ Represents a submodel that extracts fields from a specific type of form.
New in version v2.1: The model_id property, support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.CustomFormSubmodel[source]¶ Converts a dict in the shape of a CustomFormSubmodel to the model itself.
- Parameters
data (dict) – A dictionary in the shape of CustomFormSubmodel.
- Returns
CustomFormSubmodel
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of CustomFormSubmodel.
- Returns
dict
- Return type
-
fields
: Dict[str, azure.ai.formrecognizer._models.CustomFormModelField]¶ A dictionary of the fields that this submodel will recognize from the input document. The fields dictionary keys are the name of the field. For models trained with labels, this is the training-time label of the field. For models trained without labels, a unique name is generated for each field.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentAnalysisApiVersion
(value)[source]¶ Form Recognizer API versions supported by DocumentAnalysisClient and DocumentModelAdministrationClient.
-
V2022_08_31
= '2022-08-31'¶
-
V2023_07_31
= '2023-07-31'¶ This is the default version
-
-
class
azure.ai.formrecognizer.
DocumentAnalysisClient
(endpoint: str, credential: Union[azure.core.credentials.AzureKeyCredential, azure.core.credentials.TokenCredential], **kwargs: Any)[source]¶ DocumentAnalysisClient analyzes information from documents and images, and classifies documents. It is the interface to use for analyzing with prebuilt models (receipts, business cards, invoices, identity documents, among others), analyzing layout from documents, analyzing general document types, and analyzing custom documents with built models (to see a full list of models supported by the service, see: https://aka.ms/azsdk/formrecognizer/models). It provides different methods based on inputs from a URL and inputs from a stream.
Note
DocumentAnalysisClient should be used with API versions 2022-08-31 and up. To use API versions <=v2.1, instantiate a FormRecognizerClient.
- Parameters
endpoint (str) – Supported Cognitive Services endpoints (protocol and hostname, for example: https://westus2.api.cognitive.microsoft.com).
credential (
AzureKeyCredential
orTokenCredential
) – Credentials needed for the client to connect to Azure. This is an instance of AzureKeyCredential if using an API key or a token credential fromazure.identity
.
- Keyword Arguments
api_version (str or DocumentAnalysisApiVersion) – The API version of the service to use for requests. It defaults to the latest service version. Setting to an older version may result in reduced feature compatibility. To use API versions <=v2.1, instantiate a FormRecognizerClient.
New in version 2022-08-31: The DocumentAnalysisClient and its client methods.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentAnalysisClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_analysis_client = DocumentAnalysisClient(endpoint, AzureKeyCredential(key))
"""DefaultAzureCredential will use the values from these environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET """ from azure.ai.formrecognizer import DocumentAnalysisClient from azure.identity import DefaultAzureCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] credential = DefaultAzureCredential() document_analysis_client = DocumentAnalysisClient(endpoint, credential)
-
begin_analyze_document
(model_id: str, document: Union[bytes, IO[bytes]], **kwargs: Any) → azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.AnalyzeResult][source]¶ Analyze field text and semantic values from a given document.
- Parameters
model_id (str) – A unique model identifier can be passed in as a string. Use this to specify the custom model ID or prebuilt model ID. Prebuilt model IDs supported can be found here: https://aka.ms/azsdk/formrecognizer/models
document (bytes or IO[bytes]) – File stream or bytes. For service supported file types, see: https://aka.ms/azsdk/formrecognizer/supportedfiles.
- Keyword Arguments
pages (str) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=”1-3, 5-6”. Separate each page number or range with a comma.
locale (str) – Locale hint of the input document. See supported locales here: https://aka.ms/azsdk/formrecognizer/supportedlocales.
features (list[str]) – Document analysis features to enable.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a
AnalyzeResult
.- Return type
- Raises
New in version 2023-07-31: The features keyword argument.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentAnalysisClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_analysis_client = DocumentAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) with open(path_to_sample_documents, "rb") as f: poller = document_analysis_client.begin_analyze_document( "prebuilt-invoice", document=f, locale="en-US" ) invoices = poller.result() for idx, invoice in enumerate(invoices.documents): print(f"--------Analyzing invoice #{idx + 1}--------") vendor_name = invoice.fields.get("VendorName") if vendor_name: print( f"Vendor Name: {vendor_name.value} has confidence: {vendor_name.confidence}" ) vendor_address = invoice.fields.get("VendorAddress") if vendor_address: print( f"Vendor Address: {vendor_address.value} has confidence: {vendor_address.confidence}" ) vendor_address_recipient = invoice.fields.get("VendorAddressRecipient") if vendor_address_recipient: print( f"Vendor Address Recipient: {vendor_address_recipient.value} has confidence: {vendor_address_recipient.confidence}" ) customer_name = invoice.fields.get("CustomerName") if customer_name: print( f"Customer Name: {customer_name.value} has confidence: {customer_name.confidence}" ) customer_id = invoice.fields.get("CustomerId") if customer_id: print( f"Customer Id: {customer_id.value} has confidence: {customer_id.confidence}" ) customer_address = invoice.fields.get("CustomerAddress") if customer_address: print( f"Customer Address: {customer_address.value} has confidence: {customer_address.confidence}" ) customer_address_recipient = invoice.fields.get("CustomerAddressRecipient") if customer_address_recipient: print( f"Customer Address Recipient: {customer_address_recipient.value} has confidence: {customer_address_recipient.confidence}" ) invoice_id = invoice.fields.get("InvoiceId") if invoice_id: print( f"Invoice Id: {invoice_id.value} has confidence: {invoice_id.confidence}" ) invoice_date = invoice.fields.get("InvoiceDate") if invoice_date: print( f"Invoice Date: {invoice_date.value} has confidence: {invoice_date.confidence}" ) invoice_total = invoice.fields.get("InvoiceTotal") if invoice_total: print( f"Invoice Total: {invoice_total.value} has confidence: {invoice_total.confidence}" ) due_date = invoice.fields.get("DueDate") if due_date: print(f"Due Date: {due_date.value} has confidence: {due_date.confidence}") purchase_order = invoice.fields.get("PurchaseOrder") if purchase_order: print( f"Purchase Order: {purchase_order.value} has confidence: {purchase_order.confidence}" ) billing_address = invoice.fields.get("BillingAddress") if billing_address: print( f"Billing Address: {billing_address.value} has confidence: {billing_address.confidence}" ) billing_address_recipient = invoice.fields.get("BillingAddressRecipient") if billing_address_recipient: print( f"Billing Address Recipient: {billing_address_recipient.value} has confidence: {billing_address_recipient.confidence}" ) shipping_address = invoice.fields.get("ShippingAddress") if shipping_address: print( f"Shipping Address: {shipping_address.value} has confidence: {shipping_address.confidence}" ) shipping_address_recipient = invoice.fields.get("ShippingAddressRecipient") if shipping_address_recipient: print( f"Shipping Address Recipient: {shipping_address_recipient.value} has confidence: {shipping_address_recipient.confidence}" ) print("Invoice items:") for idx, item in enumerate(invoice.fields.get("Items").value): print(f"...Item #{idx + 1}") item_description = item.value.get("Description") if item_description: print( f"......Description: {item_description.value} has confidence: {item_description.confidence}" ) item_quantity = item.value.get("Quantity") if item_quantity: print( f"......Quantity: {item_quantity.value} has confidence: {item_quantity.confidence}" ) unit = item.value.get("Unit") if unit: print(f"......Unit: {unit.value} has confidence: {unit.confidence}") unit_price = item.value.get("UnitPrice") if unit_price: unit_price_code = unit_price.value.code if unit_price.value.code else "" print( f"......Unit Price: {unit_price.value}{unit_price_code} has confidence: {unit_price.confidence}" ) product_code = item.value.get("ProductCode") if product_code: print( f"......Product Code: {product_code.value} has confidence: {product_code.confidence}" ) item_date = item.value.get("Date") if item_date: print( f"......Date: {item_date.value} has confidence: {item_date.confidence}" ) tax = item.value.get("Tax") if tax: print(f"......Tax: {tax.value} has confidence: {tax.confidence}") amount = item.value.get("Amount") if amount: print( f"......Amount: {amount.value} has confidence: {amount.confidence}" ) subtotal = invoice.fields.get("SubTotal") if subtotal: print(f"Subtotal: {subtotal.value} has confidence: {subtotal.confidence}") total_tax = invoice.fields.get("TotalTax") if total_tax: print( f"Total Tax: {total_tax.value} has confidence: {total_tax.confidence}" ) previous_unpaid_balance = invoice.fields.get("PreviousUnpaidBalance") if previous_unpaid_balance: print( f"Previous Unpaid Balance: {previous_unpaid_balance.value} has confidence: {previous_unpaid_balance.confidence}" ) amount_due = invoice.fields.get("AmountDue") if amount_due: print( f"Amount Due: {amount_due.value} has confidence: {amount_due.confidence}" ) service_start_date = invoice.fields.get("ServiceStartDate") if service_start_date: print( f"Service Start Date: {service_start_date.value} has confidence: {service_start_date.confidence}" ) service_end_date = invoice.fields.get("ServiceEndDate") if service_end_date: print( f"Service End Date: {service_end_date.value} has confidence: {service_end_date.confidence}" ) service_address = invoice.fields.get("ServiceAddress") if service_address: print( f"Service Address: {service_address.value} has confidence: {service_address.confidence}" ) service_address_recipient = invoice.fields.get("ServiceAddressRecipient") if service_address_recipient: print( f"Service Address Recipient: {service_address_recipient.value} has confidence: {service_address_recipient.confidence}" ) remittance_address = invoice.fields.get("RemittanceAddress") if remittance_address: print( f"Remittance Address: {remittance_address.value} has confidence: {remittance_address.confidence}" ) remittance_address_recipient = invoice.fields.get("RemittanceAddressRecipient") if remittance_address_recipient: print( f"Remittance Address Recipient: {remittance_address_recipient.value} has confidence: {remittance_address_recipient.confidence}" )
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentAnalysisClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] model_id = os.getenv("CUSTOM_BUILT_MODEL_ID", custom_model_id) document_analysis_client = DocumentAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) # Make sure your document's type is included in the list of document types the custom model can analyze with open(path_to_sample_documents, "rb") as f: poller = document_analysis_client.begin_analyze_document( model_id=model_id, document=f ) result = poller.result() for idx, document in enumerate(result.documents): print(f"--------Analyzing document #{idx + 1}--------") print(f"Document has type {document.doc_type}") print(f"Document has document type confidence {document.confidence}") print(f"Document was analyzed with model with ID {result.model_id}") for name, field in document.fields.items(): field_value = field.value if field.value else field.content print( f"......found field of type '{field.value_type}' with value '{field_value}' and with confidence {field.confidence}" ) # iterate over tables, lines, and selection marks on each page for page in result.pages: print(f"\nLines found on page {page.page_number}") for line in page.lines: print(f"...Line '{line.content}'") for word in page.words: print(f"...Word '{word.content}' has a confidence of {word.confidence}") if page.selection_marks: print(f"\nSelection marks found on page {page.page_number}") for selection_mark in page.selection_marks: print( f"...Selection mark is '{selection_mark.state}' and has a confidence of {selection_mark.confidence}" ) for i, table in enumerate(result.tables): print(f"\nTable {i + 1} can be found on page:") for region in table.bounding_regions: print(f"...{region.page_number}") for cell in table.cells: print( f"...Cell[{cell.row_index}][{cell.column_index}] has text '{cell.content}'" ) print("-----------------------------------")
-
begin_analyze_document_from_url
(model_id: str, document_url: str, **kwargs: Any) → azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.AnalyzeResult][source]¶ Analyze field text and semantic values from a given document. The input must be the location (URL) of the document to be analyzed.
- Parameters
model_id (str) – A unique model identifier can be passed in as a string. Use this to specify the custom model ID or prebuilt model ID. Prebuilt model IDs supported can be found here: https://aka.ms/azsdk/formrecognizer/models
document_url (str) – The URL of the document to analyze. The input must be a valid, properly encoded (i.e. encode special characters, such as empty spaces), and publicly accessible URL. For service supported file types, see: https://aka.ms/azsdk/formrecognizer/supportedfiles.
- Keyword Arguments
pages (str) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=”1-3, 5-6”. Separate each page number or range with a comma.
locale (str) – Locale hint of the input document. See supported locales here: https://aka.ms/azsdk/formrecognizer/supportedlocales.
features (list[str]) – Document analysis features to enable.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a
AnalyzeResult
.- Return type
- Raises
New in version 2023-07-31: The features keyword argument.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentAnalysisClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_analysis_client = DocumentAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) url = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/main/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png" poller = document_analysis_client.begin_analyze_document_from_url( "prebuilt-receipt", document_url=url ) receipts = poller.result() for idx, receipt in enumerate(receipts.documents): print(f"--------Analysis of receipt #{idx + 1}--------") print(f"Receipt type: {receipt.doc_type if receipt.doc_type else 'N/A'}") merchant_name = receipt.fields.get("MerchantName") if merchant_name: print( f"Merchant Name: {merchant_name.value} has confidence: " f"{merchant_name.confidence}" ) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print( f"Transaction Date: {transaction_date.value} has confidence: " f"{transaction_date.confidence}" ) if receipt.fields.get("Items"): print("Receipt items:") for idx, item in enumerate(receipt.fields.get("Items").value): print(f"...Item #{idx + 1}") item_description = item.value.get("Description") if item_description: print( f"......Item Description: {item_description.value} has confidence: " f"{item_description.confidence}" ) item_quantity = item.value.get("Quantity") if item_quantity: print( f"......Item Quantity: {item_quantity.value} has confidence: " f"{item_quantity.confidence}" ) item_price = item.value.get("Price") if item_price: print( f"......Individual Item Price: {item_price.value} has confidence: " f"{item_price.confidence}" ) item_total_price = item.value.get("TotalPrice") if item_total_price: print( f"......Total Item Price: {item_total_price.value} has confidence: " f"{item_total_price.confidence}" ) subtotal = receipt.fields.get("Subtotal") if subtotal: print(f"Subtotal: {subtotal.value} has confidence: {subtotal.confidence}") tax = receipt.fields.get("TotalTax") if tax: print(f"Total tax: {tax.value} has confidence: {tax.confidence}") tip = receipt.fields.get("Tip") if tip: print(f"Tip: {tip.value} has confidence: {tip.confidence}") total = receipt.fields.get("Total") if total: print(f"Total: {total.value} has confidence: {total.confidence}") print("--------------------------------------")
-
begin_classify_document
(classifier_id: str, document: Union[bytes, IO[bytes]], **kwargs: Any) → azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.AnalyzeResult][source]¶ Classify a document using a document classifier. For more information on how to build a custom classifier model, see https://aka.ms/azsdk/formrecognizer/buildclassifiermodel.
- Parameters
classifier_id (str) – A unique document classifier identifier can be passed in as a string.
document (bytes or IO[bytes]) – File stream or bytes. For service supported file types, see: https://aka.ms/azsdk/formrecognizer/supportedfiles.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a
AnalyzeResult
.- Return type
- Raises
New in version 2023-07-31: The begin_classify_document client method.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentAnalysisClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] classifier_id = os.getenv("CLASSIFIER_ID", classifier_id) document_analysis_client = DocumentAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) with open(path_to_sample_documents, "rb") as f: poller = document_analysis_client.begin_classify_document( classifier_id, document=f ) result = poller.result() print("----Classified documents----") for doc in result.documents: print( f"Found document of type '{doc.doc_type or 'N/A'}' with a confidence of {doc.confidence} contained on " f"the following pages: {[region.page_number for region in doc.bounding_regions]}" )
-
begin_classify_document_from_url
(classifier_id: str, document_url: str, **kwargs: Any) → azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.AnalyzeResult][source]¶ Classify a given document with a document classifier. For more information on how to build a custom classifier model, see https://aka.ms/azsdk/formrecognizer/buildclassifiermodel. The input must be the location (URL) of the document to be classified.
- Parameters
classifier_id (str) – A unique document classifier identifier can be passed in as a string.
document_url (str) – The URL of the document to classify. The input must be a valid, properly encoded (i.e. encode special characters, such as empty spaces), and publicly accessible URL of one of the supported formats: https://aka.ms/azsdk/formrecognizer/supportedfiles.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a
AnalyzeResult
.- Return type
- Raises
New in version 2023-07-31: The begin_classify_document_from_url client method.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentAnalysisClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] classifier_id = os.getenv("CLASSIFIER_ID", classifier_id) document_analysis_client = DocumentAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) url = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/main/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/IRS-1040.pdf" poller = document_analysis_client.begin_classify_document_from_url( classifier_id, document_url=url ) result = poller.result() print("----Classified documents----") for doc in result.documents: print( f"Found document of type '{doc.doc_type or 'N/A'}' with a confidence of {doc.confidence} contained on " f"the following pages: {[region.page_number for region in doc.bounding_regions]}" )
-
close
() → None[source]¶ Close the
DocumentAnalysisClient
session.
-
class
azure.ai.formrecognizer.
DocumentAnalysisError
(**kwargs: Any)[source]¶ DocumentAnalysisError contains the details of the error returned by the service.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentAnalysisError[source]¶ Converts a dict in the shape of a DocumentAnalysisError to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentAnalysisError.
- Returns
DocumentAnalysisError
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of DocumentAnalysisError.
- Returns
dict
- Return type
-
details
: Optional[List[azure.ai.formrecognizer._models.DocumentAnalysisError]]¶ List of detailed errors.
-
innererror
: Optional[azure.ai.formrecognizer._models.DocumentAnalysisInnerError]¶ Detailed error.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentAnalysisInnerError
(**kwargs: Any)[source]¶ Inner error details for the DocumentAnalysisError.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentAnalysisInnerError[source]¶ Converts a dict in the shape of a DocumentAnalysisInnerError to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentAnalysisInnerError.
- Returns
DocumentAnalysisInnerError
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of DocumentAnalysisInnerError.
- Returns
dict
- Return type
-
innererror
: Optional[azure.ai.formrecognizer._models.DocumentAnalysisInnerError]¶ Detailed error.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentBarcode
(**kwargs: Any)[source]¶ A barcode object.
-
classmethod
from_dict
(data: Dict[str, Any]) → azure.ai.formrecognizer._models.DocumentBarcode[source]¶ Converts a dict in the shape of a DocumentBarcode to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentBarcode.
- Returns
DocumentBarcode
- Return type
-
to_dict
() → Dict[str, Any][source]¶ Returns a dict representation of DocumentBarcode.
- Returns
Dict[str, Any]
- Return type
Dict[str, Any]
-
kind
: typing_extensions.Literal[QRCode, PDF417, UPCA, UPCE, Code39, Code128, EAN8, EAN13, DataBar, Code93, Codabar, DataBarExpanded, ITF, MicroQRCode, Aztec, DataMatrix, MaxiCode]¶ Barcode kind. Known values are “QRCode”, “PDF417”, “UPCA”, “UPCE”, “Code39”, “Code128”, “EAN8”, “EAN13”, “DataBar”, “Code93”, “Codabar”, “DataBarExpanded”, “ITF”, “MicroQRCode”, “Aztec”, “DataMatrix”, “MaxiCode”.
-
polygon
: Sequence[azure.ai.formrecognizer._models.Point]¶ Bounding polygon of the barcode.
-
span
: azure.ai.formrecognizer._models.DocumentSpan¶ Location of the barcode in the reading order concatenated content.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentClassifierDetails
(**kwargs: Any)[source]¶ Document classifier information. Includes the doc types that the model can classify.
-
classmethod
from_dict
(data: Dict[str, Any]) → azure.ai.formrecognizer._models.DocumentClassifierDetails[source]¶ Converts a dict in the shape of a DocumentClassifierDetails to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentClassifierDetails.
- Returns
DocumentClassifierDetails
- Return type
-
to_dict
() → Dict[str, Any][source]¶ Returns a dict representation of DocumentClassifierDetails.
- Returns
Dict[str, Any]
- Return type
Dict[str, Any]
-
created_on
: datetime.datetime¶ Date and time (UTC) when the document classifier was created.
-
doc_types
: Mapping[str, azure.ai.formrecognizer._models.ClassifierDocumentTypeDetails]¶ List of document types to classify against.
-
expires_on
: Optional[datetime.datetime]¶ Date and time (UTC) when the document classifier will expire.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentField
(**kwargs: Any)[source]¶ An object representing the content and location of a document field value.
New in version 2023-07-31: The boolean value_type and bool value
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentField[source]¶ Converts a dict in the shape of a DocumentField to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentField.
- Returns
DocumentField
- Return type
-
bounding_regions
: Optional[List[azure.ai.formrecognizer._models.BoundingRegion]]¶ Bounding regions covering the field.
-
spans
: Optional[List[azure.ai.formrecognizer._models.DocumentSpan]]¶ Location of the field in the reading order concatenated content.
-
value
: Optional[Union[str, int, float, bool, datetime.date, datetime.time, azure.ai.formrecognizer._models.CurrencyValue, azure.ai.formrecognizer._models.AddressValue, Dict[str, azure.ai.formrecognizer._models.DocumentField], List[azure.ai.formrecognizer._models.DocumentField]]]¶ The value for the recognized field. Its semantic data type is described by value_type. If the value is extracted from the document, but cannot be normalized to its type, then access the content property for a textual representation of the value.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentFormula
(**kwargs: Any)[source]¶ A formula object.
-
classmethod
from_dict
(data: Dict[str, Any]) → azure.ai.formrecognizer._models.DocumentFormula[source]¶ Converts a dict in the shape of a DocumentFormula to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentFormula.
- Returns
DocumentFormula
- Return type
-
to_dict
() → Dict[str, Any][source]¶ Returns a dict representation of DocumentFormula.
- Returns
Dict[str, Any]
- Return type
Dict[str, Any]
-
kind
: typing_extensions.Literal[inline, display]¶ Formula kind. Known values are “inline”, “display”.
-
polygon
: Sequence[azure.ai.formrecognizer._models.Point]¶ Bounding polygon of the formula.
-
span
: azure.ai.formrecognizer._models.DocumentSpan¶ Location of the formula in the reading order concatenated content.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentKeyValueElement
(**kwargs: Any)[source]¶ An object representing the field key or value in a key-value pair.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentKeyValueElement[source]¶ Converts a dict in the shape of a DocumentKeyValueElement to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentKeyValueElement.
- Returns
DocumentKeyValueElement
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of DocumentKeyValueElement.
- Returns
dict
- Return type
-
bounding_regions
: Optional[List[azure.ai.formrecognizer._models.BoundingRegion]]¶ Bounding regions covering the key-value element.
-
spans
: List[azure.ai.formrecognizer._models.DocumentSpan]¶ Location of the key-value element in the reading order of the concatenated content.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentKeyValuePair
(**kwargs: Any)[source]¶ An object representing a document field with distinct field label (key) and field value (may be empty).
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentKeyValuePair[source]¶ Converts a dict in the shape of a DocumentKeyValuePair to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentKeyValuePair.
- Returns
DocumentKeyValuePair
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of DocumentKeyValuePair.
- Returns
dict
- Return type
-
key
: azure.ai.formrecognizer._models.DocumentKeyValueElement¶ Field label of the key-value pair.
-
value
: Optional[azure.ai.formrecognizer._models.DocumentKeyValueElement]¶ Field value of the key-value pair.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentLanguage
(**kwargs: Any)[source]¶ An object representing the detected language for a given text span.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentLanguage[source]¶ Converts a dict in the shape of a DocumentLanguage to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentLanguage.
- Returns
DocumentLanguage
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of DocumentLanguage.
- Returns
dict
- Return type
-
locale
: str¶ Detected language code. Value may be an ISO 639-1 language code (ex. “en”, “fr”) or a BCP 47 language tag (ex. “zh-Hans”).
-
spans
: List[azure.ai.formrecognizer._models.DocumentSpan]¶ Location of the text elements in the concatenated content that the language applies to.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentLine
(**kwargs: Any)[source]¶ A content line object representing the content found on a single line of the document.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentLine[source]¶ Converts a dict in the shape of a DocumentLine to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentLine.
- Returns
DocumentLine
- Return type
-
get_words
() → Iterable[azure.ai.formrecognizer._models.DocumentWord][source]¶ Get the words found in the spans of this DocumentLine.
- Returns
iterable[DocumentWord]
- Return type
iterable[DocumentWord]
-
polygon
: Sequence[azure.ai.formrecognizer._models.Point]¶ Bounding polygon of the line.
-
spans
: List[azure.ai.formrecognizer._models.DocumentSpan]¶ Location of the line in the reading order concatenated content.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentModelAdministrationClient
(endpoint: str, credential: Union[azure.core.credentials.AzureKeyCredential, azure.core.credentials.TokenCredential], **kwargs: Any)[source]¶ DocumentModelAdministrationClient is the Form Recognizer interface to use for building and managing models.
It provides methods for building models and classifiers, as well as methods for viewing and deleting models and classifiers, viewing model and classifier operations, accessing account information, copying models to another Form Recognizer resource, and composing a new model from a collection of existing models.
Note
DocumentModelAdministrationClient should be used with API versions 2022-08-31 and up. To use API versions <=v2.1, instantiate a FormTrainingClient.
- Parameters
endpoint (str) – Supported Cognitive Services endpoints (protocol and hostname, for example: https://westus2.api.cognitive.microsoft.com).
credential (
AzureKeyCredential
orTokenCredential
) – Credentials needed for the client to connect to Azure. This is an instance of AzureKeyCredential if using an API key or a token credential fromazure.identity
.
- Keyword Arguments
api_version (str or DocumentAnalysisApiVersion) – The API version of the service to use for requests. It defaults to the latest service version. Setting to an older version may result in reduced feature compatibility. To use API versions <=v2.1, instantiate a FormTrainingClient.
New in version 2022-08-31: The DocumentModelAdministrationClient and its client methods.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentModelAdministrationClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_model_admin_client = DocumentModelAdministrationClient( endpoint, AzureKeyCredential(key) )
"""DefaultAzureCredential will use the values from these environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET """ from azure.ai.formrecognizer import DocumentModelAdministrationClient from azure.identity import DefaultAzureCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] credential = DefaultAzureCredential() document_model_admin_client = DocumentModelAdministrationClient( endpoint, credential )
-
begin_build_document_classifier
(doc_types: Mapping[str, azure.ai.formrecognizer._models.ClassifierDocumentTypeDetails], *, classifier_id: Optional[str] = None, description: Optional[str] = None, **kwargs: Any) → azure.ai.formrecognizer._polling.DocumentModelAdministrationLROPoller[azure.ai.formrecognizer._models.DocumentClassifierDetails][source]¶ Build a document classifier. For more information on how to build and train a custom classifier model, see https://aka.ms/azsdk/formrecognizer/buildclassifiermodel.
- Parameters
doc_types (Mapping[str, ClassifierDocumentTypeDetails]) – Mapping of document types to classify against.
- Keyword Arguments
- Returns
An instance of an DocumentModelAdministrationLROPoller. Call result() on the poller object to return a
DocumentClassifierDetails
.- Return type
DocumentModelAdministrationLROPoller[DocumentClassifierDetails]
- Raises
New in version 2023-07-31: The begin_build_document_classifier client method.
Example:
import os from azure.ai.formrecognizer import ( DocumentModelAdministrationClient, ClassifierDocumentTypeDetails, BlobSource, BlobFileListSource, ) from azure.core.credentials import AzureKeyCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] container_sas_url = os.environ["CLASSIFIER_CONTAINER_SAS_URL"] document_model_admin_client = DocumentModelAdministrationClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) poller = document_model_admin_client.begin_build_document_classifier( doc_types={ "IRS-1040-A": ClassifierDocumentTypeDetails( source=BlobSource( container_url=container_sas_url, prefix="IRS-1040-A/train" ) ), "IRS-1040-D": ClassifierDocumentTypeDetails( source=BlobFileListSource( container_url=container_sas_url, file_list="IRS-1040-D.jsonl" ) ), }, description="IRS document classifier", ) result = poller.result() print(f"Classifier ID: {result.classifier_id}") print(f"API version used to build the classifier model: {result.api_version}") print(f"Classifier description: {result.description}") print(f"Document classes used for training the model:") for doc_type, details in result.doc_types.items(): print(f"Document type: {doc_type}") print(f"Container source: {details.source.container_url}\n")
-
begin_build_document_model
(build_mode: Union[str, ModelBuildMode], *, blob_container_url: str, prefix: Optional[str] = 'None', model_id: Optional[str] = 'None', description: Optional[str] = 'None', tags: Optional[Mapping[str, str]] = 'None', **kwargs: Any) → DocumentModelAdministrationLROPoller[DocumentModelDetails][source]¶ -
begin_build_document_model
(build_mode: Union[str, ModelBuildMode], *, blob_container_url: str, file_list: str, model_id: Optional[str] = 'None', description: Optional[str] = 'None', tags: Optional[Mapping[str, str]] = 'None', **kwargs: Any) → DocumentModelAdministrationLROPoller[DocumentModelDetails] Build a custom document model.
The request must include a blob_container_url keyword parameter that is an externally accessible Azure storage blob container URI (preferably a Shared Access Signature URI). Note that a container URI (without SAS) is accepted only when the container is public or has a managed identity configured, see more about configuring managed identities to work with Form Recognizer here: https://docs.microsoft.com/azure/applied-ai-services/form-recognizer/managed-identities. Models are built using documents that are of the following content type - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’, ‘image/bmp’, or ‘image/heif’. Other types of content in the container is ignored.
- Parameters
build_mode (str or
ModelBuildMode
) – The custom model build mode. Possible values include: “template”, “neural”. For more information about build modes, see: https://aka.ms/azsdk/formrecognizer/buildmode.- Keyword Arguments
blob_container_url (str) – An Azure Storage blob container’s SAS URI. A container URI (without SAS) can be used if the container is public or has a managed identity configured. For more information on setting up a training data set, see: https://aka.ms/azsdk/formrecognizer/buildtrainingset.
model_id (str) – A unique ID for your model. If not specified, a model ID will be created for you.
description (str) – An optional description to add to the model.
prefix (str) – A case-sensitive prefix string to filter documents in the blob container url path. For example, when using an Azure storage blob URI, use the prefix to restrict sub folders. prefix should end in ‘/’ to avoid cases where filenames share the same prefix.
file_list (str) – Path to a JSONL file within the container specifying a subset of documents for training.
tags (dict[str, str]) – List of user defined key-value tag attributes associated with the model.
- Returns
An instance of an DocumentModelAdministrationLROPoller. Call result() on the poller object to return a
DocumentModelDetails
.- Return type
- Raises
New in version 2023-07-31: The file_list keyword argument.
Example:
from azure.ai.formrecognizer import ( DocumentModelAdministrationClient, ModelBuildMode, ) from azure.core.credentials import AzureKeyCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] container_sas_url = os.environ["CONTAINER_SAS_URL"] document_model_admin_client = DocumentModelAdministrationClient( endpoint, AzureKeyCredential(key) ) poller = document_model_admin_client.begin_build_document_model( ModelBuildMode.TEMPLATE, blob_container_url=container_sas_url, description="my model description", ) model = poller.result() print(f"Model ID: {model.model_id}") print(f"Description: {model.description}") print(f"Model created on: {model.created_on}") print(f"Model expires on: {model.expires_on}") print("Doc types the model can recognize:") for name, doc_type in model.doc_types.items(): print( f"Doc Type: '{name}' built with '{doc_type.build_mode}' mode which has the following fields:" ) for field_name, field in doc_type.field_schema.items(): print( f"Field: '{field_name}' has type '{field['type']}' and confidence score " f"{doc_type.field_confidence[field_name]}" )
-
begin_compose_document_model
(component_model_ids: List[str], **kwargs: Any) → azure.ai.formrecognizer._polling.DocumentModelAdministrationLROPoller[azure.ai.formrecognizer._models.DocumentModelDetails][source]¶ Creates a composed document model from a collection of existing models.
A composed model allows multiple models to be called with a single model ID. When a document is submitted to be analyzed with a composed model ID, a classification step is first performed to route it to the correct custom model.
- Parameters
component_model_ids (list[str]) – List of model IDs to use in the composed model.
- Keyword Arguments
- Returns
An instance of an DocumentModelAdministrationLROPoller. Call result() on the poller object to return a
DocumentModelDetails
.- Return type
- Raises
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import ( DocumentModelAdministrationClient, ModelBuildMode, ) endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] po_supplies = os.environ["PURCHASE_ORDER_OFFICE_SUPPLIES_SAS_URL"] po_equipment = os.environ["PURCHASE_ORDER_OFFICE_EQUIPMENT_SAS_URL"] po_furniture = os.environ["PURCHASE_ORDER_OFFICE_FURNITURE_SAS_URL"] po_cleaning_supplies = os.environ["PURCHASE_ORDER_OFFICE_CLEANING_SUPPLIES_SAS_URL"] document_model_admin_client = DocumentModelAdministrationClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) supplies_poller = document_model_admin_client.begin_build_document_model( ModelBuildMode.TEMPLATE, blob_container_url=po_supplies, description="Purchase order-Office supplies", ) equipment_poller = document_model_admin_client.begin_build_document_model( ModelBuildMode.TEMPLATE, blob_container_url=po_equipment, description="Purchase order-Office Equipment", ) furniture_poller = document_model_admin_client.begin_build_document_model( ModelBuildMode.TEMPLATE, blob_container_url=po_furniture, description="Purchase order-Furniture", ) cleaning_supplies_poller = document_model_admin_client.begin_build_document_model( ModelBuildMode.TEMPLATE, blob_container_url=po_cleaning_supplies, description="Purchase order-Cleaning Supplies", ) supplies_model = supplies_poller.result() equipment_model = equipment_poller.result() furniture_model = furniture_poller.result() cleaning_supplies_model = cleaning_supplies_poller.result() purchase_order_models = [ supplies_model.model_id, equipment_model.model_id, furniture_model.model_id, cleaning_supplies_model.model_id, ] poller = document_model_admin_client.begin_compose_document_model( purchase_order_models, description="Office Supplies Composed Model" ) model = poller.result() print("Office Supplies Composed Model Info:") print(f"Model ID: {model.model_id}") print(f"Description: {model.description}") print(f"Model created on: {model.created_on}") print(f"Model expires on: {model.expires_on}") print("Doc types the model can recognize:") for name, doc_type in model.doc_types.items(): print(f"Doc Type: '{name}' which has the following fields:") for field_name, field in doc_type.field_schema.items(): print( f"Field: '{field_name}' has type '{field['type']}' and confidence score " f"{doc_type.field_confidence[field_name]}" )
-
begin_copy_document_model_to
(model_id: str, target: TargetAuthorization, **kwargs: Any) → azure.ai.formrecognizer._polling.DocumentModelAdministrationLROPoller[azure.ai.formrecognizer._models.DocumentModelDetails][source]¶ Copy a document model stored in this resource (the source) to the user specified target Form Recognizer resource.
This should be called with the source Form Recognizer resource (with the model that is intended to be copied). The target parameter should be supplied from the target resource’s output from calling the
get_copy_authorization()
method.- Parameters
model_id (str) – Model identifier of the model to copy to target resource.
target (TargetAuthorization) – The copy authorization generated from the target resource’s call to
get_copy_authorization()
.
- Returns
An instance of a DocumentModelAdministrationLROPoller. Call result() on the poller object to return a
DocumentModelDetails
.- Return type
- Raises
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentModelAdministrationClient source_endpoint = os.environ["AZURE_FORM_RECOGNIZER_SOURCE_ENDPOINT"] source_key = os.environ["AZURE_FORM_RECOGNIZER_SOURCE_KEY"] target_endpoint = os.environ["AZURE_FORM_RECOGNIZER_TARGET_ENDPOINT"] target_key = os.environ["AZURE_FORM_RECOGNIZER_TARGET_KEY"] source_model_id = os.getenv("AZURE_SOURCE_MODEL_ID", custom_model_id) target_client = DocumentModelAdministrationClient( endpoint=target_endpoint, credential=AzureKeyCredential(target_key) ) target = target_client.get_copy_authorization( description="model copied from other resource" ) source_client = DocumentModelAdministrationClient( endpoint=source_endpoint, credential=AzureKeyCredential(source_key) ) poller = source_client.begin_copy_document_model_to( model_id=source_model_id, target=target, # output from target client's call to get_copy_authorization() ) copied_over_model = poller.result() print(f"Model ID: {copied_over_model.model_id}") print(f"Description: {copied_over_model.description}") print(f"Model created on: {copied_over_model.created_on}") print(f"Model expires on: {copied_over_model.expires_on}") print("Doc types the model can recognize:") for name, doc_type in copied_over_model.doc_types.items(): print(f"Doc Type: '{name}' which has the following fields:") for field_name, field in doc_type.field_schema.items(): print( f"Field: '{field_name}' has type '{field['type']}' and confidence score " f"{doc_type.field_confidence[field_name]}" )
-
close
() → None[source]¶ Close the
DocumentModelAdministrationClient
session.
-
delete_document_classifier
(classifier_id: str, **kwargs: Any) → None[source]¶ Delete a document classifier.
- Parameters
classifier_id (str) – Classifier identifier.
- Returns
None
- Return type
- Raises
New in version 2023-07-31: The delete_document_classifier client method.
Example:
document_model_admin_client.delete_document_classifier( classifier_id=my_classifier.classifier_id ) try: document_model_admin_client.get_document_classifier( classifier_id=my_classifier.classifier_id ) except ResourceNotFoundError: print(f"Successfully deleted classifier with ID {my_classifier.classifier_id}")
-
delete_document_model
(model_id: str, **kwargs: Any) → None[source]¶ Delete a custom document model.
- Parameters
model_id (str) – Model identifier.
- Returns
None
- Return type
- Raises
Example:
document_model_admin_client.delete_document_model(model_id=my_model.model_id) try: document_model_admin_client.get_document_model(model_id=my_model.model_id) except ResourceNotFoundError: print(f"Successfully deleted model with ID {my_model.model_id}")
Generate authorization for copying a custom model into the target Form Recognizer resource.
This should be called by the target resource (where the model will be copied to) and the output can be passed as the target parameter into
begin_copy_document_model_to()
.- Keyword Arguments
- Returns
A dictionary with values necessary for the copy authorization.
- Return type
TargetAuthorization
- Raises
-
get_document_analysis_client
(**kwargs: Any) → azure.ai.formrecognizer._document_analysis_client.DocumentAnalysisClient[source]¶ Get an instance of a DocumentAnalysisClient from DocumentModelAdministrationClient.
- Return type
- Returns
A DocumentAnalysisClient
-
get_document_classifier
(classifier_id: str, **kwargs: Any) → azure.ai.formrecognizer._models.DocumentClassifierDetails[source]¶ Get a document classifier by its ID.
- Parameters
classifier_id (str) – Classifier identifier.
- Returns
DocumentClassifierDetails
- Return type
- Raises
New in version 2023-07-31: The get_document_classifier client method.
Example:
my_classifier = document_model_admin_client.get_document_classifier( classifier_id=classifier_model.classifier_id ) print(f"\nClassifier ID: {my_classifier.classifier_id}") print(f"Description: {my_classifier.description}") print(f"Classifier created on: {my_classifier.created_on}")
-
get_document_model
(model_id: str, **kwargs: Any) → azure.ai.formrecognizer._models.DocumentModelDetails[source]¶ Get a document model by its ID.
- Parameters
model_id (str) – Model identifier.
- Returns
DocumentModelDetails
- Return type
- Raises
Example:
my_model = document_model_admin_client.get_document_model(model_id=model.model_id) print(f"\nModel ID: {my_model.model_id}") print(f"Description: {my_model.description}") print(f"Model created on: {my_model.created_on}") print(f"Model expires on: {my_model.expires_on}")
-
get_operation
(operation_id: str, **kwargs: Any) → azure.ai.formrecognizer._models.OperationDetails[source]¶ Get an operation by its ID.
Get an operation associated with the Form Recognizer resource. Note that operation information only persists for 24 hours. If the document model operation was successful, the model can be accessed using the
get_document_model()
orlist_document_models()
APIs.- Parameters
operation_id (str) – The operation ID.
- Returns
OperationDetails
- Return type
- Raises
Example:
# Get an operation by ID if operations: print(f"\nGetting operation info by ID: {operations[0].operation_id}") operation_info = document_model_admin_client.get_operation( operations[0].operation_id ) if operation_info.status == "succeeded": print(f"My {operation_info.kind} operation is completed.") result = operation_info.result if result is not None: if operation_info.kind == "documentClassifierBuild": print(f"Classifier ID: {result.classifier_id}") else: print(f"Model ID: {result.model_id}") elif operation_info.status == "failed": print(f"My {operation_info.kind} operation failed.") error = operation_info.error if error is not None: print(f"{error.code}: {error.message}") else: print(f"My operation status is {operation_info.status}") else: print("No operations found.")
-
get_resource_details
(**kwargs: Any) → azure.ai.formrecognizer._models.ResourceDetails[source]¶ Get information about the models under the Form Recognizer resource.
- Returns
Summary of custom models under the resource - model count and limit.
- Return type
- Raises
Example:
document_model_admin_client = DocumentModelAdministrationClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) account_details = document_model_admin_client.get_resource_details() print( f"Our resource has {account_details.custom_document_models.count} custom models, " f"and we can have at most {account_details.custom_document_models.limit} custom models" ) neural_models = account_details.neural_document_model_quota print( f"The quota limit for custom neural document models is {neural_models.quota} and the resource has" f"used {neural_models.used}. The resource quota will reset on {neural_models.quota_resets_on}" )
-
list_document_classifiers
(**kwargs: Any) → azure.core.paging.ItemPaged[azure.ai.formrecognizer._models.DocumentClassifierDetails][source]¶ List information for each document classifier, including its classifier ID, description, and when it was created.
- Returns
Pageable of DocumentClassifierDetails.
- Return type
- Raises
New in version 2023-07-31: The list_document_classifiers client method.
Example:
classifiers = document_model_admin_client.list_document_classifiers() print("We have the following 'ready' models with IDs and descriptions:") for classifier in classifiers: print(f"{classifier.classifier_id} | {classifier.description}")
-
list_document_models
(**kwargs: Any) → azure.core.paging.ItemPaged[azure.ai.formrecognizer._models.DocumentModelSummary][source]¶ List information for each model, including its model ID, description, and when it was created.
- Returns
Pageable of DocumentModelSummary.
- Return type
- Raises
Example:
models = document_model_admin_client.list_document_models() print("We have the following 'ready' models with IDs and descriptions:") for model in models: print(f"{model.model_id} | {model.description}")
-
list_operations
(**kwargs: Any) → azure.core.paging.ItemPaged[azure.ai.formrecognizer._models.OperationSummary][source]¶ List information for each operation.
Lists all operations associated with the Form Recognizer resource. Note that operation information only persists for 24 hours. If a document model operation was successful, the document model can be accessed using the
get_document_model()
orlist_document_models()
APIs.- Returns
A pageable of OperationSummary.
- Return type
- Raises
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentModelAdministrationClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_model_admin_client = DocumentModelAdministrationClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) operations = list(document_model_admin_client.list_operations()) print("The following document model operations exist under my resource:") for operation in operations: print(f"\nOperation ID: {operation.operation_id}") print(f"Operation kind: {operation.kind}") print(f"Operation status: {operation.status}") print(f"Operation percent completed: {operation.percent_completed}") print(f"Operation created on: {operation.created_on}") print(f"Operation last updated on: {operation.last_updated_on}") print( f"Resource location of successful operation: {operation.resource_location}" )
-
class
azure.ai.formrecognizer.
DocumentModelAdministrationLROPoller
(*args, **kwargs)[source]¶ Implements a protocol followed by returned poller objects.
-
property
details
¶
-
property
-
class
azure.ai.formrecognizer.
DocumentModelDetails
(**kwargs: Any)[source]¶ Document model information. Includes the doc types that the model can analyze.
New in version 2023-07-31: The expires_on property.
-
classmethod
from_dict
(data: Dict[str, Any]) → azure.ai.formrecognizer._models.DocumentModelDetails[source]¶ Converts a dict in the shape of a DocumentModelDetails to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentModelDetails.
- Returns
DocumentModelDetails
- Return type
-
to_dict
() → Dict[str, Any][source]¶ Returns a dict representation of DocumentModelDetails.
- Returns
Dict[str, Any]
- Return type
Dict[str, Any]
-
created_on
: datetime.datetime¶ Date and time (UTC) when the model was created.
-
doc_types
: Optional[Dict[str, azure.ai.formrecognizer._models.DocumentTypeDetails]]¶ Supported document types, including the fields for each document and their types.
-
expires_on
: Optional[datetime.datetime]¶ Date and time (UTC) when the document model will expire.
List of user defined key-value tag attributes associated with the model.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentModelSummary
(**kwargs: Any)[source]¶ A summary of document model information including the model ID, its description, and when the model was created.
New in version 2023-07-31: The expires_on property.
-
classmethod
from_dict
(data: Dict[str, Any]) → azure.ai.formrecognizer._models.DocumentModelSummary[source]¶ Converts a dict in the shape of a DocumentModelSummary to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentModelSummary.
- Returns
DocumentModelSummary
- Return type
-
to_dict
() → Dict[str, Any][source]¶ Returns a dict representation of DocumentModelSummary.
- Returns
Dict[str, Any]
- Return type
Dict[str, Any]
-
created_on
: datetime.datetime¶ Date and time (UTC) when the model was created.
-
expires_on
: Optional[datetime.datetime]¶ Date and time (UTC) when the document model will expire.
List of user defined key-value tag attributes associated with the model.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentPage
(**kwargs: Any)[source]¶ Content and layout elements extracted from a page of the input.
New in version 2023-07-31: The barcodes, and formulas properties.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentPage[source]¶ Converts a dict in the shape of a DocumentPage to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentPage.
- Returns
DocumentPage
- Return type
-
angle
: Optional[float]¶ The general orientation of the content in clockwise direction, measured in degrees between (-180, 180].
-
barcodes
: List[azure.ai.formrecognizer._models.DocumentBarcode]¶ Extracted barcodes from the page.
-
formulas
: List[azure.ai.formrecognizer._models.DocumentFormula]¶ Extracted formulas from the page
-
lines
: List[azure.ai.formrecognizer._models.DocumentLine]¶ Extracted lines from the page, potentially containing both textual and visual elements.
-
selection_marks
: List[azure.ai.formrecognizer._models.DocumentSelectionMark]¶ Extracted selection marks from the page.
-
spans
: List[azure.ai.formrecognizer._models.DocumentSpan]¶ Location of the page in the reading order concatenated content.
-
unit
: Optional[str]¶ The unit used by the width, height, and bounding polygon properties. For images, the unit is “pixel”. For PDF, the unit is “inch”. Possible values include: “pixel”, “inch”.
-
words
: List[azure.ai.formrecognizer._models.DocumentWord]¶ Extracted words from the page.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentParagraph
(**kwargs: Any)[source]¶ A paragraph object generally consisting of contiguous lines with common alignment and spacing.
New in version 2023-07-31: The formulaBlock role.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentParagraph[source]¶ Converts a dict in the shape of a DocumentParagraph to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentParagraph.
- Returns
DocumentParagraph
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of DocumentParagraph.
- Returns
dict
- Return type
-
bounding_regions
: Optional[List[azure.ai.formrecognizer._models.BoundingRegion]]¶ Bounding regions covering the paragraph.
-
role
: Optional[str]¶ “pageHeader”, “pageFooter”, “pageNumber”, “title”, “sectionHeading”, “footnote”, “formulaBlock”.
- Type
Semantic role of the paragraph. Known values are
-
spans
: List[azure.ai.formrecognizer._models.DocumentSpan]¶ Location of the paragraph in the reading order concatenated content.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentSelectionMark
(**kwargs: Any)[source]¶ A selection mark object representing check boxes, radio buttons, and other elements indicating a selection.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentSelectionMark[source]¶ Converts a dict in the shape of a DocumentSelectionMark to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentSelectionMark.
- Returns
DocumentSelectionMark
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of DocumentSelectionMark.
- Returns
dict
- Return type
-
polygon
: Sequence[azure.ai.formrecognizer._models.Point]¶ Bounding polygon of the selection mark.
-
span
: azure.ai.formrecognizer._models.DocumentSpan¶ Location of the selection mark in the reading order concatenated content.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentSpan
(**kwargs: Any)[source]¶ Contiguous region of the content of the property, specified as an offset and length.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentSpan[source]¶ Converts a dict in the shape of a DocumentSpan to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentSpan.
- Returns
DocumentSpan
- Return type
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentStyle
(**kwargs: Any)[source]¶ An object representing observed text styles.
New in version 2023-07-31: The similar_font_family, font_style, font_weight, color, and background_color properties.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentStyle[source]¶ Converts a dict in the shape of a DocumentStyle to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentStyle.
- Returns
DocumentStyle
- Return type
-
similar_font_family
: Optional[str]¶ Visually most similar font from among the set of supported font families, with fallback fonts following CSS convention (ex. ‘Arial, sans-serif’).
-
spans
: List[azure.ai.formrecognizer._models.DocumentSpan]¶ Location of the text elements in the concatenated content the style applies to.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentTable
(**kwargs: Any)[source]¶ A table object consisting of table cells arranged in a rectangular layout.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentTable[source]¶ Converts a dict in the shape of a DocumentTable to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentTable.
- Returns
DocumentTable
- Return type
-
bounding_regions
: Optional[List[azure.ai.formrecognizer._models.BoundingRegion]]¶ Bounding regions covering the table.
-
cells
: List[azure.ai.formrecognizer._models.DocumentTableCell]¶ Cells contained within the table.
-
spans
: List[azure.ai.formrecognizer._models.DocumentSpan]¶ Location of the table in the reading order concatenated content.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentTableCell
(**kwargs: Any)[source]¶ An object representing the location and content of a table cell.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentTableCell[source]¶ Converts a dict in the shape of a DocumentTableCell to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentTableCell.
- Returns
DocumentTableCell
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of DocumentTableCell.
- Returns
dict
- Return type
-
bounding_regions
: Optional[List[azure.ai.formrecognizer._models.BoundingRegion]]¶ Bounding regions covering the table cell.
-
kind
: Optional[str]¶ “content”, “rowHeader”, “columnHeader”, “stubHead”, “description”. Default value: “content”.
- Type
Table cell kind. Possible values include
-
spans
: List[azure.ai.formrecognizer._models.DocumentSpan]¶ Location of the table cell in the reading order concatenated content.
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentTypeDetails
(**kwargs: Any)[source]¶ DocumentTypeDetails represents a document type that a model can recognize, including its fields and types, and the confidence for those fields.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentTypeDetails[source]¶ Converts a dict in the shape of a DocumentTypeDetails to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentTypeDetails.
- Returns
DocumentTypeDetails
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of DocumentTypeDetails.
- Returns
dict
- Return type
-
classmethod
-
class
azure.ai.formrecognizer.
DocumentWord
(**kwargs: Any)[source]¶ A word object consisting of a contiguous sequence of characters. For non-space delimited languages, such as Chinese, Japanese, and Korean, each character is represented as its own word.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.DocumentWord[source]¶ Converts a dict in the shape of a DocumentWord to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentWord.
- Returns
DocumentWord
- Return type
-
polygon
: Sequence[azure.ai.formrecognizer._models.Point]¶ Bounding polygon of the word.
-
span
: azure.ai.formrecognizer._models.DocumentSpan¶ Location of the word in the reading order concatenated content.
-
classmethod
-
class
azure.ai.formrecognizer.
FieldData
(**kwargs: Any)[source]¶ Contains the data for the form field. This includes the text, location of the text on the form, and a collection of the elements that make up the text.
New in version v2.1: FormSelectionMark is added to the types returned in the list of field_elements, support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.FieldData[source]¶ Converts a dict in the shape of a FieldData to the model itself.
-
bounding_box
: List[azure.ai.formrecognizer._models.Point]¶ A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
-
field_elements
: List[Union[azure.ai.formrecognizer._models.FormElement, azure.ai.formrecognizer._models.FormWord, azure.ai.formrecognizer._models.FormLine, azure.ai.formrecognizer._models.FormSelectionMark]]¶ When include_field_elements is set to true, a list of elements constituting this field or value is returned. The list constitutes of elements such as lines, words, and selection marks.
-
classmethod
-
class
azure.ai.formrecognizer.
FieldValueType
(value)[source]¶ Semantic data type of the field value.
New in version v2.1: The selectionMark and countryRegion values
-
COUNTRY_REGION
= 'countryRegion'¶
-
DATE
= 'date'¶
-
DICTIONARY
= 'dictionary'¶
-
FLOAT
= 'float'¶
-
INTEGER
= 'integer'¶
-
LIST
= 'list'¶
-
PHONE_NUMBER
= 'phoneNumber'¶
-
SELECTION_MARK
= 'selectionMark'¶
-
STRING
= 'string'¶
-
TIME
= 'time'¶
-
-
class
azure.ai.formrecognizer.
FormContentType
(value)[source]¶ Content type for upload.
New in version v2.1: Support for image/bmp
-
APPLICATION_PDF
= 'application/pdf'¶
-
IMAGE_BMP
= 'image/bmp'¶
-
IMAGE_JPEG
= 'image/jpeg'¶
-
IMAGE_PNG
= 'image/png'¶
-
IMAGE_TIFF
= 'image/tiff'¶
-
-
class
azure.ai.formrecognizer.
FormElement
(**kwargs: Any)[source]¶ Base type which includes properties for a form element.
New in version v2.1: Support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.FormElement[source]¶ Converts a dict in the shape of a FormElement to the model itself.
- Parameters
data (dict) – A dictionary in the shape of FormElement.
- Returns
FormElement
- Return type
-
bounding_box
: List[azure.ai.formrecognizer._models.Point]¶ A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
-
kind
: str¶ The kind of form element. Possible kinds are “word”, “line”, or “selectionMark” which correspond to a
FormWord
FormLine
, orFormSelectionMark
, respectively.
-
classmethod
-
class
azure.ai.formrecognizer.
FormField
(**kwargs: Any)[source]¶ Represents a field recognized in an input form.
New in version v2.1: Support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.FormField[source]¶ Converts a dict in the shape of a FormField to the model itself.
-
confidence
: float¶ Measures the degree of certainty of the recognition result. Value is between [0.0, 1.0].
-
label_data
: azure.ai.formrecognizer._models.FieldData¶ Contains the text, bounding box, and field elements for the field label. Note that this is not returned for forms analyzed by models trained with labels.
-
name
: str¶ The unique name of the field or the training-time label if analyzed from a custom model that was trained with labels.
-
value
: Union[str, int, float, datetime.date, datetime.time, Dict[str, azure.ai.formrecognizer._models.FormField], List[azure.ai.formrecognizer._models.FormField]]¶ The value for the recognized field. Its semantic data type is described by value_type. If the value is extracted from the form, but cannot be normalized to its type, then access the value_data.text property for a textual representation of the value.
-
value_data
: azure.ai.formrecognizer._models.FieldData¶ Contains the text, bounding box, and field elements for the field value.
-
value_type
: str¶ The type of value found on FormField. Described in
FieldValueType
, possible types include: ‘string’, ‘date’, ‘time’, ‘phoneNumber’, ‘float’, ‘integer’, ‘dictionary’, ‘list’, ‘selectionMark’, or ‘countryRegion’.
-
classmethod
-
class
azure.ai.formrecognizer.
FormLine
(**kwargs: Any)[source]¶ An object representing an extracted line of text.
New in version v2.1: appearance property, support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.FormLine[source]¶ Converts a dict in the shape of a FormLine to the model itself.
-
appearance
: azure.ai.formrecognizer._models.TextAppearance¶ An object representing the appearance of the line.
-
bounding_box
: List[azure.ai.formrecognizer._models.Point]¶ A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
-
words
: List[azure.ai.formrecognizer._models.FormWord]¶ A list of the words that make up the line.
-
classmethod
-
class
azure.ai.formrecognizer.
FormPage
(**kwargs: Any)[source]¶ Represents a page recognized from the input document. Contains lines, words, selection marks, tables and page metadata.
New in version v2.1: selection_marks property, support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.FormPage[source]¶ Converts a dict in the shape of a FormPage to the model itself.
-
lines
: List[azure.ai.formrecognizer._models.FormLine]¶ When include_field_elements is set to true, a list of recognized text lines is returned. For calls to recognize content, this list is always populated. The maximum number of lines returned is 300 per page. The lines are sorted top to bottom, left to right, although in certain cases proximity is treated with higher priority. As the sorting order depends on the detected text, it may change across images and OCR version updates. Thus, business logic should be built upon the actual line location instead of order. The reading order of lines can be specified by the reading_order keyword argument (Note: reading_order only supported in begin_recognize_content and begin_recognize_content_from_url).
-
selection_marks
: List[azure.ai.formrecognizer._models.FormSelectionMark]¶ List of selection marks extracted from the page.
-
tables
: List[azure.ai.formrecognizer._models.FormTable]¶ A list of extracted tables contained in a page.
-
text_angle
: float¶ The general orientation of the text in clockwise direction, measured in degrees between (-180, 180].
-
unit
: str¶ The
LengthUnit
used by the width, height, and bounding box properties. For images, the unit is “pixel”. For PDF, the unit is “inch”.
-
classmethod
-
class
azure.ai.formrecognizer.
FormPageRange
(first_page_number: int, last_page_number: int)[source]¶ The 1-based page range of the form.
New in version v2.1: Support for to_dict and from_dict methods
Create new instance of FormPageRange(first_page_number, last_page_number)
-
count
(value, /)¶ Return number of occurrences of value.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.FormPageRange[source]¶ Converts a dict in the shape of a FormPageRange to the model itself.
- Parameters
data (dict) – A dictionary in the shape of FormPageRange.
- Returns
FormPageRange
- Return type
-
index
(value, start=0, stop=9223372036854775807, /)¶ Return first index of value.
Raises ValueError if the value is not present.
-
-
class
azure.ai.formrecognizer.
FormRecognizerApiVersion
(value)[source]¶ Form Recognizer API versions supported by FormRecognizerClient and FormTrainingClient.
-
V2_0
= '2.0'¶
-
V2_1
= '2.1'¶ This is the default version
-
-
class
azure.ai.formrecognizer.
FormRecognizerClient
(endpoint: str, credential: Union[azure.core.credentials.AzureKeyCredential, azure.core.credentials.TokenCredential], **kwargs: Any)[source]¶ FormRecognizerClient extracts information from forms and images into structured data. It is the interface to use for analyzing with prebuilt models (receipts, business cards, invoices, identity documents), recognizing content/layout from forms, and analyzing custom forms from trained models. It provides different methods based on inputs from a URL and inputs from a stream.
Note
FormRecognizerClient should be used with API versions <=v2.1. To use API versions 2022-08-31 and up, instantiate a DocumentAnalysisClient.
- Parameters
endpoint (str) – Supported Cognitive Services endpoints (protocol and hostname, for example: https://westus2.api.cognitive.microsoft.com).
credential (
AzureKeyCredential
orTokenCredential
) – Credentials needed for the client to connect to Azure. This is an instance of AzureKeyCredential if using an API key or a token credential fromazure.identity
.
- Keyword Arguments
api_version (str or FormRecognizerApiVersion) – The API version of the service to use for requests. It defaults to API version v2.1. Setting to an older version may result in reduced feature compatibility. To use the latest supported API version and features, instantiate a DocumentAnalysisClient instead.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
"""DefaultAzureCredential will use the values from these environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET """ from azure.ai.formrecognizer import FormRecognizerClient from azure.identity import DefaultAzureCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] credential = DefaultAzureCredential() form_recognizer_client = FormRecognizerClient(endpoint, credential)
-
begin_recognize_business_cards
(business_card: Union[bytes, IO[bytes]], **kwargs: Any) → azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given business card. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
See fields found on a business card here: https://aka.ms/formrecognizer/businesscardfields
- Parameters
business_card (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
locale (str) – Locale of the business card. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_business_cards client method
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) with open(path_to_sample_forms, "rb") as f: poller = form_recognizer_client.begin_recognize_business_cards(business_card=f, locale="en-US") business_cards = poller.result() for idx, business_card in enumerate(business_cards): print("--------Recognizing business card #{}--------".format(idx+1)) contact_names = business_card.fields.get("ContactNames") if contact_names: for contact_name in contact_names.value: print("Contact First Name: {} has confidence: {}".format( contact_name.value["FirstName"].value, contact_name.value["FirstName"].confidence )) print("Contact Last Name: {} has confidence: {}".format( contact_name.value["LastName"].value, contact_name.value["LastName"].confidence )) company_names = business_card.fields.get("CompanyNames") if company_names: for company_name in company_names.value: print("Company Name: {} has confidence: {}".format(company_name.value, company_name.confidence)) departments = business_card.fields.get("Departments") if departments: for department in departments.value: print("Department: {} has confidence: {}".format(department.value, department.confidence)) job_titles = business_card.fields.get("JobTitles") if job_titles: for job_title in job_titles.value: print("Job Title: {} has confidence: {}".format(job_title.value, job_title.confidence)) emails = business_card.fields.get("Emails") if emails: for email in emails.value: print("Email: {} has confidence: {}".format(email.value, email.confidence)) websites = business_card.fields.get("Websites") if websites: for website in websites.value: print("Website: {} has confidence: {}".format(website.value, website.confidence)) addresses = business_card.fields.get("Addresses") if addresses: for address in addresses.value: print("Address: {} has confidence: {}".format(address.value, address.confidence)) mobile_phones = business_card.fields.get("MobilePhones") if mobile_phones: for phone in mobile_phones.value: print("Mobile phone number: {} has confidence: {}".format(phone.value, phone.confidence)) faxes = business_card.fields.get("Faxes") if faxes: for fax in faxes.value: print("Fax number: {} has confidence: {}".format(fax.value, fax.confidence)) work_phones = business_card.fields.get("WorkPhones") if work_phones: for work_phone in work_phones.value: print("Work phone number: {} has confidence: {}".format(work_phone.value, work_phone.confidence)) other_phones = business_card.fields.get("OtherPhones") if other_phones: for other_phone in other_phones.value: print("Other phone number: {} has confidence: {}".format(other_phone.value, other_phone.confidence))
-
begin_recognize_business_cards_from_url
(business_card_url: str, **kwargs: Any) → azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given business card. The input document must be the location (URL) of the card to be analyzed.
See fields found on a business card here: https://aka.ms/formrecognizer/businesscardfields
- Parameters
business_card_url (str) – The URL of the business card to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
locale (str) – Locale of the business card. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_business_cards_from_url client method
-
begin_recognize_content
(form: Union[bytes, IO[bytes]], **kwargs: Any) → azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.FormPage]][source]¶ Extract text and content/layout information from a given document. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
- Parameters
form (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
language (str) – The BCP-47 language code of the text in the document. See supported language codes here: https://docs.microsoft.com/azure/cognitive-services/form-recognizer/language-support. Content supports auto language identification and multilanguage documents, so only provide a language code if you would like to force the documented to be processed as that specific language.
reading_order (str) – Reading order algorithm to sort the text lines returned. Supported reading orders include: basic (default), natural. Set ‘basic’ to sort lines left to right and top to bottom, although in some cases proximity is treated with higher priority. Set ‘natural’ to sort lines by using positional information to keep nearby lines together.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
FormPage
].- Return type
- Raises
New in version v2.1: The pages, language and reading_order keyword arguments and support for image/bmp content
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient(endpoint=endpoint, credential=AzureKeyCredential(key)) with open(path_to_sample_forms, "rb") as f: poller = form_recognizer_client.begin_recognize_content(form=f) form_pages = poller.result() for idx, content in enumerate(form_pages): print("----Recognizing content from page #{}----".format(idx+1)) print("Page has width: {} and height: {}, measured with unit: {}".format( content.width, content.height, content.unit )) for table_idx, table in enumerate(content.tables): print("Table # {} has {} rows and {} columns".format(table_idx, table.row_count, table.column_count)) print("Table # {} location on page: {}".format(table_idx, format_bounding_box(table.bounding_box))) for cell in table.cells: print("...Cell[{}][{}] has text '{}' within bounding box '{}'".format( cell.row_index, cell.column_index, cell.text, format_bounding_box(cell.bounding_box) )) for line_idx, line in enumerate(content.lines): print("Line # {} has word count '{}' and text '{}' within bounding box '{}'".format( line_idx, len(line.words), line.text, format_bounding_box(line.bounding_box) )) if line.appearance: if line.appearance.style_name == "handwriting" and line.appearance.style_confidence > 0.8: print("Text line '{}' is handwritten and might be a signature.".format(line.text)) for word in line.words: print("...Word '{}' has a confidence of {}".format(word.text, word.confidence)) for selection_mark in content.selection_marks: print("Selection mark is '{}' within bounding box '{}' and has a confidence of {}".format( selection_mark.state, format_bounding_box(selection_mark.bounding_box), selection_mark.confidence )) print("----------------------------------------")
-
begin_recognize_content_from_url
(form_url: str, **kwargs: Any) → azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.FormPage]][source]¶ Extract text and layout information from a given document. The input document must be the location (URL) of the document to be analyzed.
- Parameters
form_url (str) – The URL of the form to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
language (str) – The BCP-47 language code of the text in the document. See supported language codes here: https://docs.microsoft.com/azure/cognitive-services/form-recognizer/language-support. Content supports auto language identification and multilanguage documents, so only provide a language code if you would like to force the documented to be processed as that specific language.
reading_order (str) – Reading order algorithm to sort the text lines returned. Supported reading orders include: basic (default), natural. Set ‘basic’ to sort lines left to right and top to bottom, although in some cases proximity is treated with higher priority. Set ‘natural’ to sort lines by using positional information to keep nearby lines together.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
FormPage
].- Return type
- Raises
New in version v2.1: The pages, language and reading_order keyword arguments and support for image/bmp content
-
begin_recognize_custom_forms
(model_id: str, form: Union[bytes, IO[bytes]], **kwargs: Any) → azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Analyze a custom form with a model trained with or without labels. The form to analyze should be of the same type as the forms that were used to train the model. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’, or ‘image/bmp’.
- Parameters
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] model_id = os.getenv("CUSTOM_TRAINED_MODEL_ID", custom_model_id) form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) # Make sure your form's type is included in the list of form types the custom model can recognize with open(path_to_sample_forms, "rb") as f: poller = form_recognizer_client.begin_recognize_custom_forms( model_id=model_id, form=f, include_field_elements=True ) forms = poller.result() for idx, form in enumerate(forms): print("--------Recognizing Form #{}--------".format(idx+1)) print("Form has type {}".format(form.form_type)) print("Form has form type confidence {}".format(form.form_type_confidence)) print("Form was analyzed with model with ID {}".format(form.model_id)) for name, field in form.fields.items(): # each field is of type FormField # label_data is populated if you are using a model trained without labels, # since the service needs to make predictions for labels if not explicitly given to it. if field.label_data: print("...Field '{}' has label '{}' with a confidence score of {}".format( name, field.label_data.text, field.confidence )) print("...Label '{}' has value '{}' with a confidence score of {}".format( field.label_data.text if field.label_data else name, field.value, field.confidence )) # iterate over tables, lines, and selection marks on each page for page in form.pages: for i, table in enumerate(page.tables): print("\nTable {} on page {}".format(i+1, table.page_number)) for cell in table.cells: print("...Cell[{}][{}] has text '{}' with confidence {}".format( cell.row_index, cell.column_index, cell.text, cell.confidence )) print("\nLines found on page {}".format(page.page_number)) for line in page.lines: print("...Line '{}' is made up of the following words: ".format(line.text)) for word in line.words: print("......Word '{}' has a confidence of {}".format( word.text, word.confidence )) if page.selection_marks: print("\nSelection marks found on page {}".format(page.page_number)) for selection_mark in page.selection_marks: print("......Selection mark is '{}' and has a confidence of {}".format( selection_mark.state, selection_mark.confidence )) print("-----------------------------------")
-
begin_recognize_custom_forms_from_url
(model_id: str, form_url: str, **kwargs: Any) → azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Analyze a custom form with a model trained with or without labels. The form to analyze should be of the same type as the forms that were used to train the model. The input document must be the location (URL) of the document to be analyzed.
- Parameters
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
-
begin_recognize_identity_documents
(identity_document: Union[bytes, IO[bytes]], **kwargs: Any) → azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given identity document. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
See fields found on an identity document here: https://aka.ms/formrecognizer/iddocumentfields
- Parameters
identity_document (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.continuation_token (str) – A continuation token to restart a poller from a saved state.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_identity_documents client method
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) with open(path_to_sample_forms, "rb") as f: poller = form_recognizer_client.begin_recognize_identity_documents(identity_document=f) id_documents = poller.result() for idx, id_document in enumerate(id_documents): print("--------Recognizing ID document #{}--------".format(idx+1)) first_name = id_document.fields.get("FirstName") if first_name: print("First Name: {} has confidence: {}".format(first_name.value, first_name.confidence)) last_name = id_document.fields.get("LastName") if last_name: print("Last Name: {} has confidence: {}".format(last_name.value, last_name.confidence)) document_number = id_document.fields.get("DocumentNumber") if document_number: print("Document Number: {} has confidence: {}".format(document_number.value, document_number.confidence)) dob = id_document.fields.get("DateOfBirth") if dob: print("Date of Birth: {} has confidence: {}".format(dob.value, dob.confidence)) doe = id_document.fields.get("DateOfExpiration") if doe: print("Date of Expiration: {} has confidence: {}".format(doe.value, doe.confidence)) sex = id_document.fields.get("Sex") if sex: print("Sex: {} has confidence: {}".format(sex.value, sex.confidence)) address = id_document.fields.get("Address") if address: print("Address: {} has confidence: {}".format(address.value, address.confidence)) country_region = id_document.fields.get("CountryRegion") if country_region: print("Country/Region: {} has confidence: {}".format(country_region.value, country_region.confidence)) region = id_document.fields.get("Region") if region: print("Region: {} has confidence: {}".format(region.value, region.confidence))
-
begin_recognize_identity_documents_from_url
(identity_document_url: str, **kwargs: Any) → azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given identity document. The input document must be the location (URL) of the identity document to be analyzed.
See fields found on an identity document here: https://aka.ms/formrecognizer/iddocumentfields
- Parameters
identity_document_url (str) – The URL of the identity document to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
continuation_token (str) – A continuation token to restart a poller from a saved state.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_identity_documents_from_url client method
-
begin_recognize_invoices
(invoice: Union[bytes, IO[bytes]], **kwargs: Any) → azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given invoice. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
See fields found on a invoice here: https://aka.ms/formrecognizer/invoicefields
- Parameters
invoice (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
locale (str) – Locale of the invoice. Supported locales include: en-US
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_invoices client method
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) with open(path_to_sample_forms, "rb") as f: poller = form_recognizer_client.begin_recognize_invoices(invoice=f, locale="en-US") invoices = poller.result() for idx, invoice in enumerate(invoices): print("--------Recognizing invoice #{}--------".format(idx+1)) vendor_name = invoice.fields.get("VendorName") if vendor_name: print("Vendor Name: {} has confidence: {}".format(vendor_name.value, vendor_name.confidence)) vendor_address = invoice.fields.get("VendorAddress") if vendor_address: print("Vendor Address: {} has confidence: {}".format(vendor_address.value, vendor_address.confidence)) vendor_address_recipient = invoice.fields.get("VendorAddressRecipient") if vendor_address_recipient: print("Vendor Address Recipient: {} has confidence: {}".format(vendor_address_recipient.value, vendor_address_recipient.confidence)) customer_name = invoice.fields.get("CustomerName") if customer_name: print("Customer Name: {} has confidence: {}".format(customer_name.value, customer_name.confidence)) customer_id = invoice.fields.get("CustomerId") if customer_id: print("Customer Id: {} has confidence: {}".format(customer_id.value, customer_id.confidence)) customer_address = invoice.fields.get("CustomerAddress") if customer_address: print("Customer Address: {} has confidence: {}".format(customer_address.value, customer_address.confidence)) customer_address_recipient = invoice.fields.get("CustomerAddressRecipient") if customer_address_recipient: print("Customer Address Recipient: {} has confidence: {}".format(customer_address_recipient.value, customer_address_recipient.confidence)) invoice_id = invoice.fields.get("InvoiceId") if invoice_id: print("Invoice Id: {} has confidence: {}".format(invoice_id.value, invoice_id.confidence)) invoice_date = invoice.fields.get("InvoiceDate") if invoice_date: print("Invoice Date: {} has confidence: {}".format(invoice_date.value, invoice_date.confidence)) invoice_total = invoice.fields.get("InvoiceTotal") if invoice_total: print("Invoice Total: {} has confidence: {}".format(invoice_total.value, invoice_total.confidence)) due_date = invoice.fields.get("DueDate") if due_date: print("Due Date: {} has confidence: {}".format(due_date.value, due_date.confidence)) purchase_order = invoice.fields.get("PurchaseOrder") if purchase_order: print("Purchase Order: {} has confidence: {}".format(purchase_order.value, purchase_order.confidence)) billing_address = invoice.fields.get("BillingAddress") if billing_address: print("Billing Address: {} has confidence: {}".format(billing_address.value, billing_address.confidence)) billing_address_recipient = invoice.fields.get("BillingAddressRecipient") if billing_address_recipient: print("Billing Address Recipient: {} has confidence: {}".format(billing_address_recipient.value, billing_address_recipient.confidence)) shipping_address = invoice.fields.get("ShippingAddress") if shipping_address: print("Shipping Address: {} has confidence: {}".format(shipping_address.value, shipping_address.confidence)) shipping_address_recipient = invoice.fields.get("ShippingAddressRecipient") if shipping_address_recipient: print("Shipping Address Recipient: {} has confidence: {}".format(shipping_address_recipient.value, shipping_address_recipient.confidence)) print("Invoice items:") for idx, item in enumerate(invoice.fields.get("Items").value): print("...Item #{}".format(idx+1)) item_description = item.value.get("Description") if item_description: print("......Description: {} has confidence: {}".format(item_description.value, item_description.confidence)) item_quantity = item.value.get("Quantity") if item_quantity: print("......Quantity: {} has confidence: {}".format(item_quantity.value, item_quantity.confidence)) unit = item.value.get("Unit") if unit: print("......Unit: {} has confidence: {}".format(unit.value, unit.confidence)) unit_price = item.value.get("UnitPrice") if unit_price: print("......Unit Price: {} has confidence: {}".format(unit_price.value, unit_price.confidence)) product_code = item.value.get("ProductCode") if product_code: print("......Product Code: {} has confidence: {}".format(product_code.value, product_code.confidence)) item_date = item.value.get("Date") if item_date: print("......Date: {} has confidence: {}".format(item_date.value, item_date.confidence)) tax = item.value.get("Tax") if tax: print("......Tax: {} has confidence: {}".format(tax.value, tax.confidence)) amount = item.value.get("Amount") if amount: print("......Amount: {} has confidence: {}".format(amount.value, amount.confidence)) subtotal = invoice.fields.get("SubTotal") if subtotal: print("Subtotal: {} has confidence: {}".format(subtotal.value, subtotal.confidence)) total_tax = invoice.fields.get("TotalTax") if total_tax: print("Total Tax: {} has confidence: {}".format(total_tax.value, total_tax.confidence)) previous_unpaid_balance = invoice.fields.get("PreviousUnpaidBalance") if previous_unpaid_balance: print("Previous Unpaid Balance: {} has confidence: {}".format(previous_unpaid_balance.value, previous_unpaid_balance.confidence)) amount_due = invoice.fields.get("AmountDue") if amount_due: print("Amount Due: {} has confidence: {}".format(amount_due.value, amount_due.confidence)) service_start_date = invoice.fields.get("ServiceStartDate") if service_start_date: print("Service Start Date: {} has confidence: {}".format(service_start_date.value, service_start_date.confidence)) service_end_date = invoice.fields.get("ServiceEndDate") if service_end_date: print("Service End Date: {} has confidence: {}".format(service_end_date.value, service_end_date.confidence)) service_address = invoice.fields.get("ServiceAddress") if service_address: print("Service Address: {} has confidence: {}".format(service_address.value, service_address.confidence)) service_address_recipient = invoice.fields.get("ServiceAddressRecipient") if service_address_recipient: print("Service Address Recipient: {} has confidence: {}".format(service_address_recipient.value, service_address_recipient.confidence)) remittance_address = invoice.fields.get("RemittanceAddress") if remittance_address: print("Remittance Address: {} has confidence: {}".format(remittance_address.value, remittance_address.confidence)) remittance_address_recipient = invoice.fields.get("RemittanceAddressRecipient") if remittance_address_recipient: print("Remittance Address Recipient: {} has confidence: {}".format(remittance_address_recipient.value, remittance_address_recipient.confidence))
-
begin_recognize_invoices_from_url
(invoice_url: str, **kwargs: Any) → azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given invoice. The input document must be the location (URL) of the invoice to be analyzed.
See fields found on a invoice card here: https://aka.ms/formrecognizer/invoicefields
- Parameters
invoice_url (str) – The URL of the invoice to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
locale (str) – Locale of the invoice. Supported locales include: en-US
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_invoices_from_url client method
-
begin_recognize_receipts
(receipt: Union[bytes, IO[bytes]], **kwargs: Any) → azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given sales receipt. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
See fields found on a receipt here: https://aka.ms/formrecognizer/receiptfields
- Parameters
receipt (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.continuation_token (str) – A continuation token to restart a poller from a saved state.
locale (str) – Locale of the receipt. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The locale and pages keyword arguments and support for image/bmp content
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) with open(path_to_sample_forms, "rb") as f: poller = form_recognizer_client.begin_recognize_receipts(receipt=f, locale="en-US") receipts = poller.result() for idx, receipt in enumerate(receipts): print("--------Recognizing receipt #{}--------".format(idx+1)) receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {} has confidence: {}".format(receipt_type.value, receipt_type.confidence)) merchant_name = receipt.fields.get("MerchantName") if merchant_name: print("Merchant Name: {} has confidence: {}".format(merchant_name.value, merchant_name.confidence)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {} has confidence: {}".format(transaction_date.value, transaction_date.confidence)) if receipt.fields.get("Items"): print("Receipt items:") for idx, item in enumerate(receipt.fields.get("Items").value): print("...Item #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("......Item Name: {} has confidence: {}".format(item_name.value, item_name.confidence)) item_quantity = item.value.get("Quantity") if item_quantity: print("......Item Quantity: {} has confidence: {}".format(item_quantity.value, item_quantity.confidence)) item_price = item.value.get("Price") if item_price: print("......Individual Item Price: {} has confidence: {}".format(item_price.value, item_price.confidence)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("......Total Item Price: {} has confidence: {}".format(item_total_price.value, item_total_price.confidence)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} has confidence: {}".format(subtotal.value, subtotal.confidence)) tax = receipt.fields.get("Tax") if tax: print("Tax: {} has confidence: {}".format(tax.value, tax.confidence)) tip = receipt.fields.get("Tip") if tip: print("Tip: {} has confidence: {}".format(tip.value, tip.confidence)) total = receipt.fields.get("Total") if total: print("Total: {} has confidence: {}".format(total.value, total.confidence)) print("--------------------------------------")
-
begin_recognize_receipts_from_url
(receipt_url: str, **kwargs: Any) → azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given sales receipt. The input document must be the location (URL) of the receipt to be analyzed.
See fields found on a receipt here: https://aka.ms/formrecognizer/receiptfields
- Parameters
receipt_url (str) – The URL of the receipt to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
continuation_token (str) – A continuation token to restart a poller from a saved state.
locale (str) – Locale of the receipt. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The locale and pages keyword arguments and support for image/bmp content
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) url = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/main/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png" poller = form_recognizer_client.begin_recognize_receipts_from_url(receipt_url=url) receipts = poller.result() for idx, receipt in enumerate(receipts): print("--------Recognizing receipt #{}--------".format(idx+1)) receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {} has confidence: {}".format(receipt_type.value, receipt_type.confidence)) merchant_name = receipt.fields.get("MerchantName") if merchant_name: print("Merchant Name: {} has confidence: {}".format(merchant_name.value, merchant_name.confidence)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {} has confidence: {}".format(transaction_date.value, transaction_date.confidence)) if receipt.fields.get("Items"): print("Receipt items:") for idx, item in enumerate(receipt.fields.get("Items").value): print("...Item #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("......Item Name: {} has confidence: {}".format(item_name.value, item_name.confidence)) item_quantity = item.value.get("Quantity") if item_quantity: print("......Item Quantity: {} has confidence: {}".format(item_quantity.value, item_quantity.confidence)) item_price = item.value.get("Price") if item_price: print("......Individual Item Price: {} has confidence: {}".format(item_price.value, item_price.confidence)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("......Total Item Price: {} has confidence: {}".format(item_total_price.value, item_total_price.confidence)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} has confidence: {}".format(subtotal.value, subtotal.confidence)) tax = receipt.fields.get("Tax") if tax: print("Tax: {} has confidence: {}".format(tax.value, tax.confidence)) tip = receipt.fields.get("Tip") if tip: print("Tip: {} has confidence: {}".format(tip.value, tip.confidence)) total = receipt.fields.get("Total") if total: print("Total: {} has confidence: {}".format(total.value, total.confidence)) print("--------------------------------------")
-
close
() → None[source]¶ Close the
FormRecognizerClient
session.
-
class
azure.ai.formrecognizer.
FormRecognizerError
(**kwargs: Any)[source]¶ Represents an error that occurred while training.
New in version v2.1: Support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.FormRecognizerError[source]¶ Converts a dict in the shape of a FormRecognizerError to the model itself.
- Parameters
data (dict) – A dictionary in the shape of FormRecognizerError.
- Returns
FormRecognizerError
- Return type
-
classmethod
-
class
azure.ai.formrecognizer.
FormSelectionMark
(**kwargs: Any)[source]¶ Information about the extracted selection mark.
New in version v2.1: Support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.FormSelectionMark[source]¶ Converts a dict in the shape of a FormSelectionMark to the model itself.
- Parameters
data (dict) – A dictionary in the shape of FormSelectionMark.
- Returns
FormSelectionMark
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of FormSelectionMark.
- Returns
dict
- Return type
-
bounding_box
: List[azure.ai.formrecognizer._models.Point]¶ A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
-
classmethod
-
class
azure.ai.formrecognizer.
FormTable
(**kwargs: Any)[source]¶ Information about the extracted table contained on a page.
New in version v2.1: The bounding_box property, support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.FormTable[source]¶ Converts a dict in the shape of a FormTable to the model itself.
-
bounding_box
: List[azure.ai.formrecognizer._models.Point]¶ A list of 4 points representing the quadrilateral bounding box that outlines the table. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
-
cells
: List[azure.ai.formrecognizer._models.FormTableCell]¶ List of cells contained in the table.
-
classmethod
-
class
azure.ai.formrecognizer.
FormTableCell
(**kwargs: Any)[source]¶ Represents a cell contained in a table recognized from the input document.
New in version v2.1: FormSelectionMark is added to the types returned in the list of field_elements, support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.FormTableCell[source]¶ Converts a dict in the shape of a FormTableCell to the model itself.
- Parameters
data (dict) – A dictionary in the shape of FormTableCell.
- Returns
FormTableCell
- Return type
-
bounding_box
: List[azure.ai.formrecognizer._models.Point]¶ A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
-
confidence
: float¶ Measures the degree of certainty of the recognition result. Value is between [0.0, 1.0].
-
field_elements
: List[Union[azure.ai.formrecognizer._models.FormElement, azure.ai.formrecognizer._models.FormWord, azure.ai.formrecognizer._models.FormLine, azure.ai.formrecognizer._models.FormSelectionMark]]¶ When include_field_elements is set to true, a list of elements constituting this cell is returned. The list constitutes of elements such as lines, words, and selection marks. For calls to begin_recognize_content(), this list is always populated.
Whether the current cell is a footer cell.
-
classmethod
-
class
azure.ai.formrecognizer.
FormTrainingClient
(endpoint: str, credential: Union[azure.core.credentials.AzureKeyCredential, azure.core.credentials.TokenCredential], **kwargs: Any)[source]¶ FormTrainingClient is the Form Recognizer interface to use for creating and managing custom models. It provides methods for training models on the forms you provide, as well as methods for viewing and deleting models, accessing account properties, copying models to another Form Recognizer resource, and composing models from a collection of existing models trained with labels.
Note
FormTrainingClient should be used with API versions <=v2.1. To use API versions 2022-08-31 and up, instantiate a DocumentModelAdministrationClient.
- Parameters
endpoint (str) – Supported Cognitive Services endpoints (protocol and hostname, for example: https://westus2.api.cognitive.microsoft.com).
credential (
AzureKeyCredential
orTokenCredential
) – Credentials needed for the client to connect to Azure. This is an instance of AzureKeyCredential if using an API key or a token credential fromazure.identity
.
- Keyword Arguments
api_version (str or FormRecognizerApiVersion) – The API version of the service to use for requests. It defaults to API version v2.1. Setting to an older version may result in reduced feature compatibility. To use the latest supported API version and features, instantiate a DocumentModelAdministrationClient instead.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormTrainingClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
"""DefaultAzureCredential will use the values from these environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET """ from azure.ai.formrecognizer import FormTrainingClient from azure.identity import DefaultAzureCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] credential = DefaultAzureCredential() form_training_client = FormTrainingClient(endpoint, credential)
-
begin_copy_model
(model_id: str, target: Dict[str, Union[str, int]], **kwargs: Any) → azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.CustomFormModelInfo][source]¶ Copy a custom model stored in this resource (the source) to the user specified target Form Recognizer resource. This should be called with the source Form Recognizer resource (with the model that is intended to be copied). The target parameter should be supplied from the target resource’s output from calling the
get_copy_authorization()
method.- Parameters
model_id (str) – Model identifier of the model to copy to target resource.
Union[str, int]] target (Dict[str,) – The copy authorization generated from the target resource’s call to
get_copy_authorization()
.
- Keyword Arguments
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a
CustomFormModelInfo
.- Return type
- Raises
Example:
source_client = FormTrainingClient(endpoint=source_endpoint, credential=AzureKeyCredential(source_key)) poller = source_client.begin_copy_model( model_id=source_model_id, target=target # output from target client's call to get_copy_authorization() ) copied_over_model = poller.result() print("Model ID: {}".format(copied_over_model.model_id)) print("Status: {}".format(copied_over_model.status))
-
begin_create_composed_model
(model_ids: List[str], **kwargs: Any) → azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.CustomFormModel][source]¶ Creates a composed model from a collection of existing models that were trained with labels.
A composed model allows multiple models to be called with a single model ID. When a document is submitted to be analyzed with a composed model ID, a classification step is first performed to route it to the correct custom model.
- Parameters
model_ids (list[str]) – List of model IDs to use in the composed model.
- Keyword Arguments
- Returns
An instance of an LROPoller. Call result() on the poller object to return a
CustomFormModel
.- Return type
- Raises
New in version v2.1: The begin_create_composed_model client method
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormTrainingClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] po_supplies = os.environ['PURCHASE_ORDER_OFFICE_SUPPLIES_SAS_URL_V2'] po_equipment = os.environ['PURCHASE_ORDER_OFFICE_EQUIPMENT_SAS_URL_V2'] po_furniture = os.environ['PURCHASE_ORDER_OFFICE_FURNITURE_SAS_URL_V2'] po_cleaning_supplies = os.environ['PURCHASE_ORDER_OFFICE_CLEANING_SUPPLIES_SAS_URL_V2'] form_training_client = FormTrainingClient(endpoint=endpoint, credential=AzureKeyCredential(key)) supplies_poller = form_training_client.begin_training( po_supplies, use_training_labels=True, model_name="Purchase order - Office supplies" ) equipment_poller = form_training_client.begin_training( po_equipment, use_training_labels=True, model_name="Purchase order - Office Equipment" ) furniture_poller = form_training_client.begin_training( po_furniture, use_training_labels=True, model_name="Purchase order - Furniture" ) cleaning_supplies_poller = form_training_client.begin_training( po_cleaning_supplies, use_training_labels=True, model_name="Purchase order - Cleaning Supplies" ) supplies_model = supplies_poller.result() equipment_model = equipment_poller.result() furniture_model = furniture_poller.result() cleaning_supplies_model = cleaning_supplies_poller.result() models_trained_with_labels = [ supplies_model.model_id, equipment_model.model_id, furniture_model.model_id, cleaning_supplies_model.model_id ] poller = form_training_client.begin_create_composed_model( models_trained_with_labels, model_name="Office Supplies Composed Model" ) model = poller.result() print("Office Supplies Composed Model Info:") print("Model ID: {}".format(model.model_id)) print("Model name: {}".format(model.model_name)) print("Is this a composed model?: {}".format(model.properties.is_composed_model)) print("Status: {}".format(model.status)) print("Composed model creation started on: {}".format(model.training_started_on)) print("Creation completed on: {}".format(model.training_completed_on))
-
begin_training
(training_files_url: str, use_training_labels: bool, **kwargs: Any) → azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.CustomFormModel][source]¶ Create and train a custom model. The request must include a training_files_url parameter that is an externally accessible Azure storage blob container URI (preferably a Shared Access Signature URI). Note that a container URI (without SAS) is accepted only when the container is public or has a managed identity configured, see more about configuring managed identities to work with Form Recognizer here: https://docs.microsoft.com/azure/applied-ai-services/form-recognizer/managed-identities. Models are trained using documents that are of the following content type - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’, or ‘image/bmp’. Other types of content in the container is ignored.
- Parameters
training_files_url (str) – An Azure Storage blob container’s SAS URI. A container URI (without SAS) can be used if the container is public or has a managed identity configured. For more information on setting up a training data set, see: https://aka.ms/azsdk/formrecognizer/buildtrainingset.
use_training_labels (bool) – Whether to train with labels or not. Corresponding labeled files must exist in the blob container if set to True.
- Keyword Arguments
prefix (str) – A case-sensitive prefix string to filter documents in the source path for training. For example, when using an Azure storage blob URI, use the prefix to restrict sub folders for training.
include_subfolders (bool) – A flag to indicate if subfolders within the set of prefix folders will also need to be included when searching for content to be preprocessed. Not supported if training with labels.
model_name (str) – An optional, user-defined name to associate with your model.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a
CustomFormModel
.- Return type
- Raises
HttpResponseError – Note that if the training fails, the exception is raised, but a model with an “invalid” status is still created. You can delete this model by calling
delete_model()
New in version v2.1: The model_name keyword argument
Example:
from azure.ai.formrecognizer import FormTrainingClient from azure.core.credentials import AzureKeyCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] container_sas_url = os.environ["CONTAINER_SAS_URL_V2"] form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key)) poller = form_training_client.begin_training(container_sas_url, use_training_labels=False) model = poller.result() # Custom model information print("Model ID: {}".format(model.model_id)) print("Status: {}".format(model.status)) print("Model name: {}".format(model.model_name)) print("Training started on: {}".format(model.training_started_on)) print("Training completed on: {}".format(model.training_completed_on)) print("Recognized fields:") # Looping through the submodels, which contains the fields they were trained on for submodel in model.submodels: print("...The submodel has form type '{}'".format(submodel.form_type)) for name, field in submodel.fields.items(): print("...The model found field '{}' to have label '{}'".format( name, field.label ))
-
close
() → None[source]¶ Close the
FormTrainingClient
session.
-
delete_model
(model_id: str, **kwargs: Any) → None[source]¶ Mark model for deletion. Model artifacts will be permanently removed within a predetermined period.
- Parameters
model_id (str) – Model identifier.
- Return type
- Raises
Example:
form_training_client.delete_model(model_id=custom_model.model_id) try: form_training_client.get_custom_model(model_id=custom_model.model_id) except ResourceNotFoundError: print("Successfully deleted model with id {}".format(custom_model.model_id))
-
get_account_properties
(**kwargs: Any) → azure.ai.formrecognizer._models.AccountProperties[source]¶ Get information about the models on the form recognizer account.
- Returns
Summary of models on account - custom model count, custom model limit.
- Return type
- Raises
Example:
form_training_client = FormTrainingClient(endpoint=endpoint, credential=AzureKeyCredential(key)) # First, we see how many custom models we have, and what our limit is account_properties = form_training_client.get_account_properties() print("Our account has {} custom models, and we can have at most {} custom models\n".format( account_properties.custom_model_count, account_properties.custom_model_limit ))
Generate authorization for copying a custom model into the target Form Recognizer resource. This should be called by the target resource (where the model will be copied to) and the output can be passed as the target parameter into
begin_copy_model()
.- Parameters
resource_id (str) – Azure Resource Id of the target Form Recognizer resource where the model will be copied to.
resource_region (str) – Location of the target Form Recognizer resource. A valid Azure region name supported by Cognitive Services. For example, ‘westus’, ‘eastus’ etc. See https://azure.microsoft.com/global-infrastructure/services/?products=cognitive-services for the regional availability of Cognitive Services.
- Returns
A dictionary with values for the copy authorization - “modelId”, “accessToken”, “resourceId”, “resourceRegion”, and “expirationDateTimeTicks”.
- Return type
- Raises
Example:
target_client = FormTrainingClient(endpoint=target_endpoint, credential=AzureKeyCredential(target_key)) target = target_client.get_copy_authorization( resource_region=target_region, resource_id=target_resource_id ) # model ID that target client will use to access the model once copy is complete print("Model ID: {}".format(target["modelId"]))
-
get_custom_model
(model_id: str, **kwargs: Any) → azure.ai.formrecognizer._models.CustomFormModel[source]¶ Get a description of a custom model, including the types of forms it can recognize, and the fields it will extract for each form type.
- Parameters
model_id (str) – Model identifier.
- Returns
CustomFormModel
- Return type
- Raises
Example:
custom_model = form_training_client.get_custom_model(model_id=model.model_id) print("\nModel ID: {}".format(custom_model.model_id)) print("Status: {}".format(custom_model.status)) print("Model name: {}".format(custom_model.model_name)) print("Is this a composed model?: {}".format(custom_model.properties.is_composed_model)) print("Training started on: {}".format(custom_model.training_started_on)) print("Training completed on: {}".format(custom_model.training_completed_on))
-
get_form_recognizer_client
(**kwargs: Any) → azure.ai.formrecognizer._form_recognizer_client.FormRecognizerClient[source]¶ Get an instance of a FormRecognizerClient from FormTrainingClient.
- Return type
- Returns
A FormRecognizerClient
-
list_custom_models
(**kwargs: Any) → azure.core.paging.ItemPaged[azure.ai.formrecognizer._models.CustomFormModelInfo][source]¶ List information for each model, including model id, model status, and when it was created and last modified.
- Returns
ItemPaged[
CustomFormModelInfo
]- Return type
- Raises
Example:
custom_models = form_training_client.list_custom_models() print("We have models with the following IDs:") for model_info in custom_models: print(model_info.model_id)
-
class
azure.ai.formrecognizer.
FormWord
(**kwargs: Any)[source]¶ Represents a word recognized from the input document.
New in version v2.1: Support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.FormWord[source]¶ Converts a dict in the shape of a FormWord to the model itself.
-
bounding_box
: List[azure.ai.formrecognizer._models.Point]¶ A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
-
classmethod
-
class
azure.ai.formrecognizer.
LengthUnit
(value)[source]¶ The unit used by the width, height and bounding box properties. For images, the unit is “pixel”. For PDF, the unit is “inch”.
-
INCH
= 'inch'¶
-
PIXEL
= 'pixel'¶
-
-
class
azure.ai.formrecognizer.
ModelBuildMode
(value)[source]¶ The mode used when building custom models.
For more information, see https://aka.ms/azsdk/formrecognizer/buildmode.
-
NEURAL
= 'neural'¶
-
TEMPLATE
= 'template'¶
-
-
class
azure.ai.formrecognizer.
OperationDetails
(**kwargs: Any)[source]¶ OperationDetails consists of information about the model operation, including the result or error of the operation if it has completed.
Note that operation information only persists for 24 hours. If the operation was successful, the model can also be accessed using the
get_document_model()
,list_document_models()
,get_document_classifier()
,list_document_classifiers()
APIs.New in version 2023-07-31: The documentClassifierBuild kind and DocumentClassifierDetails result.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.OperationDetails[source]¶ Converts a dict in the shape of a OperationDetails to the model itself.
- Parameters
data (dict) – A dictionary in the shape of OperationDetails.
- Returns
OperationDetails
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of OperationDetails.
- Returns
dict
- Return type
-
created_on
: datetime.datetime¶ Date and time (UTC) when the operation was created.
-
error
: Optional[azure.ai.formrecognizer._models.DocumentAnalysisError]¶ Encountered error, includes the error code, message, and details for why the operation failed.
-
kind
: str¶ “documentModelBuild”, “documentModelCompose”, “documentModelCopyTo”, “documentClassifierBuild”.
- Type
Type of operation. Possible values include
-
last_updated_on
: datetime.datetime¶ Date and time (UTC) when the operation was last updated.
-
result
: Optional[Union[azure.ai.formrecognizer._models.DocumentModelDetails, azure.ai.formrecognizer._models.DocumentClassifierDetails]]¶ Operation result upon success. Returns a DocumentModelDetails or DocumentClassifierDetails which contains all the information about the model.
-
status
: str¶ “notStarted”, “running”, “failed”, “succeeded”, “canceled”.
- Type
Operation status. Possible values include
List of user defined key-value tag attributes associated with the model.
-
classmethod
-
class
azure.ai.formrecognizer.
OperationSummary
(**kwargs: Any)[source]¶ Model operation information, including the kind and status of the operation, when it was created, and more.
Note that operation information only persists for 24 hours. If the operation was successful, the model can be accessed using the
get_document_model()
,list_document_models()
,get_document_classifier()
,list_document_classifiers()
APIs. To find out why an operation failed, useget_operation()
and provide the operation_id.New in version 2023-07-31: The documentClassifierBuild kind.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.OperationSummary[source]¶ Converts a dict in the shape of a OperationSummary to the model itself.
- Parameters
data (dict) – A dictionary in the shape of OperationSummary.
- Returns
OperationSummary
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of OperationSummary.
- Returns
dict
- Return type
-
created_on
: datetime.datetime¶ Date and time (UTC) when the operation was created.
-
kind
: str¶ “documentModelBuild”, “documentModelCompose”, “documentModelCopyTo”, “documentClassifierBuild”.
- Type
Type of operation. Possible values include
-
last_updated_on
: datetime.datetime¶ Date and time (UTC) when the operation was last updated.
-
status
: str¶ “notStarted”, “running”, “failed”, “succeeded”, “canceled”.
- Type
Operation status. Possible values include
List of user defined key-value tag attributes associated with the model.
-
classmethod
-
class
azure.ai.formrecognizer.
Point
(x: float, y: float)[source]¶ The x, y coordinate of a point on a bounding box or polygon.
New in version v2.1: Support for to_dict and from_dict methods
Create new instance of Point(x, y)
-
count
(value, /)¶ Return number of occurrences of value.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.Point[source]¶ Converts a dict in the shape of a Point to the model itself.
-
index
(value, start=0, stop=9223372036854775807, /)¶ Return first index of value.
Raises ValueError if the value is not present.
-
-
class
azure.ai.formrecognizer.
QuotaDetails
(**kwargs: Any)[source]¶ Quota used, limit, and next reset date/time.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.QuotaDetails[source]¶ Converts a dict in the shape of a QuotaDetails to the model itself.
- Parameters
data (dict) – A dictionary in the shape of QuotaDetails.
- Returns
QuotaDetails
- Return type
-
to_dict
() → Dict[str, Any][source]¶ Returns a dict representation of QuotaDetails.
- Returns
Dict[str, Any]
- Return type
Dict[str, Any]
-
quota_resets_on
: datetime.datetime¶ Date/time when the resource quota usage will be reset.
-
classmethod
-
class
azure.ai.formrecognizer.
RecognizedForm
(**kwargs: Any)[source]¶ Represents a form that has been recognized by a trained or prebuilt model. The fields property contains the form fields that were extracted from the form. Tables, text lines/words, and selection marks are extracted per page and found in the pages property.
New in version v2.1: The form_type_confidence and model_id properties, support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.RecognizedForm[source]¶ Converts a dict in the shape of a RecognizedForm to the model itself.
- Parameters
data (dict) – A dictionary in the shape of RecognizedForm.
- Returns
RecognizedForm
- Return type
-
fields
: Dict[str, azure.ai.formrecognizer._models.FormField]¶ A dictionary of the fields found on the form. The fields dictionary keys are the name of the field. For models trained with labels, this is the training-time label of the field. For models trained without labels, a unique name is generated for each field.
-
form_type_confidence
: int¶ Confidence of the type of form the model identified the submitted form to be.
-
page_range
: azure.ai.formrecognizer._models.FormPageRange¶ The first and last page number of the input form.
-
pages
: List[azure.ai.formrecognizer._models.FormPage]¶ A list of pages recognized from the input document. Contains lines, words, selection marks, tables and page metadata.
-
classmethod
-
class
azure.ai.formrecognizer.
ResourceDetails
(**kwargs: Any)[source]¶ Details regarding the Form Recognizer resource.
New in version 2023-07-31: The neural_document_model_quota property.
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.ResourceDetails[source]¶ Converts a dict in the shape of a ResourceDetails to the model itself.
- Parameters
data (dict) – A dictionary in the shape of ResourceDetails.
- Returns
ResourceDetails
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of ResourceDetails.
- Returns
dict
- Return type
-
custom_document_models
: azure.ai.formrecognizer._models.CustomDocumentModelsDetails¶ Details regarding the custom models under the Form Recognizer resource.
-
neural_document_model_quota
: Optional[azure.ai.formrecognizer._models.QuotaDetails]¶ Quota details regarding the custom neural document model builds under the Form Recognizer resource.
-
classmethod
-
class
azure.ai.formrecognizer.
TextAppearance
(**kwargs: Any)[source]¶ An object representing the appearance of the text line.
New in version v2.1: Support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.TextAppearance[source]¶ Converts a dict in the shape of a TextAppearance to the model itself.
- Parameters
data (dict) – A dictionary in the shape of TextAppearance.
- Returns
TextAppearance
- Return type
-
classmethod
-
class
azure.ai.formrecognizer.
TrainingDocumentInfo
(**kwargs: Any)[source]¶ Report for an individual document used for training a custom model.
New in version v2.1: The model_id property, support for to_dict and from_dict methods
-
classmethod
from_dict
(data: Dict) → azure.ai.formrecognizer._models.TrainingDocumentInfo[source]¶ Converts a dict in the shape of a TrainingDocumentInfo to the model itself.
- Parameters
data (dict) – A dictionary in the shape of TrainingDocumentInfo.
- Returns
TrainingDocumentInfo
- Return type
-
to_dict
() → Dict[source]¶ Returns a dict representation of TrainingDocumentInfo.
- Returns
dict
- Return type
-
errors
: List[azure.ai.formrecognizer._models.FormRecognizerError]¶ List of any errors for document.
-
status
: str¶ The
TrainingStatus
of the training operation. Possible values include: ‘succeeded’, ‘partiallySucceeded’, ‘failed’.
-
classmethod
-
class
azure.ai.formrecognizer.
TrainingStatus
(value)[source]¶ Status of the training operation.
-
FAILED
= 'failed'¶
-
PARTIALLY_SUCCEEDED
= 'partiallySucceeded'¶
-
SUCCEEDED
= 'succeeded'¶
-
-
azure.ai.formrecognizer.
TargetAuthorization
(x)¶