azure.ai.formrecognizer package

class azure.ai.formrecognizer.AccountProperties(**kwargs: Any)[source]

Summary of all the custom models on the account.

New in version v2.1: Support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.AccountProperties[source]

Converts a dict in the shape of a AccountProperties to the model itself.

Parameters

data (dict) – A dictionary in the shape of AccountProperties.

Returns

AccountProperties

Return type

AccountProperties

to_dict()Dict[source]

Returns a dict representation of AccountProperties.

Returns

dict

Return type

dict

custom_model_count: int

Current count of trained custom models.

custom_model_limit: int

Max number of models that can be trained for this account.

class azure.ai.formrecognizer.AddressValue(**kwargs: Any)[source]

An address field value.

New in version 2023-07-31: The unit, city_district, state_district, suburb, house, and level properties.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.AddressValue[source]

Converts a dict in the shape of a AddressValue to the model itself.

Parameters

data (dict) – A dictionary in the shape of AddressValue.

Returns

AddressValue

Return type

AddressValue

to_dict()Dict[source]

Returns a dict representation of AddressValue.

Returns

dict

Return type

dict

city: Optional[str]

Name of city, town, village, etc.

city_district: Optional[str]

Districts or boroughs within a city, such as Brooklyn in New York City or City of Westminster in London.

country_region: Optional[str]

Country/region.

house: Optional[str]

Building name, such as World Trade Center.

house_number: Optional[str]

House or building number.

level: Optional[str]

Floor number, such as 3F.

po_box: Optional[str]

Post office box number.

postal_code: Optional[str]

Postal code used for mail sorting.

road: Optional[str]

Street name.

state: Optional[str]

First-level administrative division.

state_district: Optional[str]

Second-level administrative division used in certain locales.

street_address: Optional[str]

Street-level address, excluding city, state, countryRegion, and postalCode.

suburb: Optional[str]

Unofficial neighborhood name, like Chinatown.

unit: Optional[str]

Apartment or office number.

class azure.ai.formrecognizer.AnalysisFeature(value)[source]

Document analysis features to enable.

BARCODES = 'barcodes'

Enable the detection of barcodes in the document.

FORMULAS = 'formulas'

Enable the detection of mathematical expressions in the document.

KEY_VALUE_PAIRS = 'keyValuePairs'

Enable the detection of general key value pairs (form fields) in the document.

LANGUAGES = 'languages'

Enable the detection of the text content language.

OCR_HIGH_RESOLUTION = 'ocrHighResolution'

Perform OCR at a higher resolution to handle documents with fine print.

STYLE_FONT = 'styleFont'

Enable the recognition of various font styles.

class azure.ai.formrecognizer.AnalyzeResult(**kwargs: Any)[source]

Document analysis result.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.AnalyzeResult[source]

Converts a dict in the shape of a AnalyzeResult to the model itself.

Parameters

data (dict) – A dictionary in the shape of AnalyzeResult.

Returns

AnalyzeResult

Return type

AnalyzeResult

to_dict()Dict[source]

Returns a dict representation of AnalyzeResult.

Returns

dict

Return type

dict

api_version: str

API version used to produce this result.

content: str

Concatenate string representation of all textual and visual elements in reading order.

documents: Optional[List[azure.ai.formrecognizer._models.AnalyzedDocument]]

Extracted documents.

key_value_pairs: Optional[List[azure.ai.formrecognizer._models.DocumentKeyValuePair]]

Extracted key-value pairs.

languages: Optional[List[azure.ai.formrecognizer._models.DocumentLanguage]]

Detected languages in the document.

model_id: str

Model ID used to produce this result.

pages: List[azure.ai.formrecognizer._models.DocumentPage]

Analyzed pages.

paragraphs: Optional[List[azure.ai.formrecognizer._models.DocumentParagraph]]

Extracted paragraphs.

styles: Optional[List[azure.ai.formrecognizer._models.DocumentStyle]]

Extracted font styles.

tables: Optional[List[azure.ai.formrecognizer._models.DocumentTable]]

Extracted tables.

class azure.ai.formrecognizer.AnalyzedDocument(**kwargs: Any)[source]

An object describing the location and semantic content of a document.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.AnalyzedDocument[source]

Converts a dict in the shape of a AnalyzedDocument to the model itself.

Parameters

data (dict) – A dictionary in the shape of AnalyzedDocument.

Returns

AnalyzedDocument

Return type

AnalyzedDocument

to_dict()Dict[source]

Returns a dict representation of AnalyzedDocument.

Returns

dict

Return type

dict

bounding_regions: Optional[List[azure.ai.formrecognizer._models.BoundingRegion]]

Bounding regions covering the document.

confidence: float

Confidence of correctly extracting the document.

doc_type: str

The type of document that was analyzed.

fields: Optional[Dict[str, azure.ai.formrecognizer._models.DocumentField]]

A dictionary of named field values.

spans: List[azure.ai.formrecognizer._models.DocumentSpan]

The location of the document in the reading order concatenated content.

class azure.ai.formrecognizer.BlobFileListSource(container_url: str, file_list: str)[source]

Content source for a file list in Azure Blob Storage.

classmethod from_dict(data: Dict[str, Any])azure.ai.formrecognizer._models.BlobFileListSource[source]

Converts a dict in the shape of a BlobFileListSource to the model itself.

Parameters

data (dict) – A dictionary in the shape of BlobFileListSource.

Returns

BlobFileListSource

Return type

BlobFileListSource

to_dict()Dict[str, Any][source]

Returns a dict representation of BlobFileListSource.

Returns

Dict[str, Any]

Return type

Dict[str, Any]

container_url: str

Azure Blob Storage container URL.

file_list: str

Path to a JSONL file within the container specifying a subset of documents for training.

class azure.ai.formrecognizer.BlobSource(container_url: str, *, prefix: Optional[str] = None)[source]

Content source for Azure Blob Storage.

classmethod from_dict(data: Dict[str, Any])azure.ai.formrecognizer._models.BlobSource[source]

Converts a dict in the shape of a BlobSource to the model itself.

Parameters

data (dict) – A dictionary in the shape of BlobSource.

Returns

BlobSource

Return type

BlobSource

to_dict()Dict[str, Any][source]

Returns a dict representation of BlobSource.

Returns

Dict[str, Any]

Return type

Dict[str, Any]

container_url: str

Azure Blob Storage container URL.

prefix: Optional[str]

Blob name prefix.

class azure.ai.formrecognizer.BoundingRegion(**kwargs: Any)[source]

The bounding region corresponding to a page.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.BoundingRegion[source]

Converts a dict in the shape of a BoundingRegion to the model itself.

Parameters

data (dict) – A dictionary in the shape of BoundingRegion.

Returns

BoundingRegion

Return type

BoundingRegion

to_dict()Dict[source]

Returns a dict representation of BoundingRegion.

Returns

dict

Return type

dict

page_number: int

The 1-based number of the page in which this content is present.

polygon: Sequence[azure.ai.formrecognizer._models.Point]

A list of points representing the bounding polygon that outlines the document component. The points are listed in clockwise order relative to the document component orientation starting from the top-left. Units are in pixels for images and inches for PDF.

class azure.ai.formrecognizer.ClassifierDocumentTypeDetails(source: Union[azure.ai.formrecognizer._models.BlobSource, azure.ai.formrecognizer._models.BlobFileListSource])[source]

Training data source.

classmethod from_dict(data: Dict[str, Any])azure.ai.formrecognizer._models.ClassifierDocumentTypeDetails[source]

Converts a dict in the shape of a ClassifierDocumentTypeDetails to the model itself.

Parameters

data (dict) – A dictionary in the shape of ClassifierDocumentTypeDetails.

Returns

ClassifierDocumentTypeDetails

Return type

ClassifierDocumentTypeDetails

to_dict()Dict[str, Any][source]

Returns a dict representation of ClassifierDocumentTypeDetails.

Returns

Dict[str, Any]

Return type

Dict[str, Any]

source: Union[azure.ai.formrecognizer._models.BlobSource, azure.ai.formrecognizer._models.BlobFileListSource]

Content source containing the training data.

source_kind: typing_extensions.Literal[azureBlob, azureBlobFileList]

“azureBlob” and “azureBlobFileList”.

Type

Type of training data source, known values are

class azure.ai.formrecognizer.CurrencyValue(**kwargs: Any)[source]

A currency value element.

New in version 2023-07-31: The code property.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.CurrencyValue[source]

Converts a dict in the shape of a CurrencyValue to the model itself.

Parameters

data (dict) – A dictionary in the shape of CurrencyValue.

Returns

CurrencyValue

Return type

CurrencyValue

to_dict()Dict[source]

Returns a dict representation of CurrencyValue.

Returns

dict

Return type

dict

amount: float

The currency amount.

code: Optional[str]

Resolved currency code (ISO 4217), if any.

symbol: Optional[str]

The currency symbol, if found.

class azure.ai.formrecognizer.CustomDocumentModelsDetails(**kwargs: Any)[source]

Details regarding the custom models under the Form Recognizer resource.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.CustomDocumentModelsDetails[source]

Converts a dict in the shape of a CustomDocumentModelsDetails to the model itself.

Parameters

data (dict) – A dictionary in the shape of CustomDocumentModelsDetails.

Returns

CustomDocumentModelsDetails

Return type

CustomDocumentModelsDetails

to_dict()Dict[source]

Returns a dict representation of CustomDocumentModelsDetails.

Returns

dict

Return type

dict

count: int

Number of custom models in the current resource.

limit: int

Maximum number of custom models supported in the current resource.

class azure.ai.formrecognizer.CustomFormModel(**kwargs: Any)[source]

Represents a trained model.

New in version v2.1: The model_name and properties properties, support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.CustomFormModel[source]

Converts a dict in the shape of a CustomFormModel to the model itself.

Parameters

data (dict) – A dictionary in the shape of CustomFormModel.

Returns

CustomFormModel

Return type

CustomFormModel

to_dict()Dict[source]

Returns a dict representation of CustomFormModel.

Returns

dict

Return type

dict

errors: List[azure.ai.formrecognizer._models.FormRecognizerError]

List of any training errors.

model_id: str

The unique identifier of this model.

model_name: str

Optional user defined model name.

properties: azure.ai.formrecognizer._models.CustomFormModelProperties

Optional model properties.

status: str

Status indicating the model’s readiness for use, CustomFormModelStatus. Possible values include: ‘creating’, ‘ready’, ‘invalid’.

submodels: List[azure.ai.formrecognizer._models.CustomFormSubmodel]

A list of submodels that are part of this model, each of which can recognize and extract fields from a different type of form.

training_completed_on: datetime.datetime

Date and time (UTC) when model training completed.

training_documents: List[azure.ai.formrecognizer._models.TrainingDocumentInfo]

Metadata about each of the documents used to train the model.

training_started_on: datetime.datetime

The date and time (UTC) when model training was started.

class azure.ai.formrecognizer.CustomFormModelField(**kwargs: Any)[source]

A field that the model will extract from forms it analyzes.

New in version v2.1: Support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.CustomFormModelField[source]

Converts a dict in the shape of a CustomFormModelField to the model itself.

Parameters

data (dict) – A dictionary in the shape of CustomFormModelField.

Returns

CustomFormModelField

Return type

CustomFormModelField

to_dict()Dict[source]

Returns a dict representation of CustomFormModelField.

Returns

dict

Return type

dict

accuracy: float

The estimated recognition accuracy for this field.

label: str

The form fields label on the form.

name: str

Canonical name; uniquely identifies a field within the form.

class azure.ai.formrecognizer.CustomFormModelInfo(**kwargs: Any)[source]

Custom model information.

New in version v2.1: The model_name and properties properties, support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.CustomFormModelInfo[source]

Converts a dict in the shape of a CustomFormModelInfo to the model itself.

Parameters

data (dict) – A dictionary in the shape of CustomFormModelInfo.

Returns

CustomFormModelInfo

Return type

CustomFormModelInfo

to_dict()Dict[source]

Returns a dict representation of CustomFormModelInfo.

Returns

dict

Return type

dict

model_id: str

The unique identifier of the model.

model_name: str

Optional user defined model name.

properties: azure.ai.formrecognizer._models.CustomFormModelProperties

Optional model properties.

status: str

The status of the model, CustomFormModelStatus. Possible values include: ‘creating’, ‘ready’, ‘invalid’.

training_completed_on: datetime.datetime

Date and time (UTC) when model training completed.

training_started_on: datetime.datetime

Date and time (UTC) when model training was started.

class azure.ai.formrecognizer.CustomFormModelProperties(**kwargs: Any)[source]

Optional model properties.

New in version v2.1: Support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.CustomFormModelProperties[source]

Converts a dict in the shape of a CustomFormModelProperties to the model itself.

Parameters

data (dict) – A dictionary in the shape of CustomFormModelProperties.

Returns

CustomFormModelProperties

Return type

CustomFormModelProperties

to_dict()Dict[source]

Returns a dict representation of CustomFormModelProperties.

Returns

dict

Return type

dict

is_composed_model: bool

false).

Type

Is this model composed? (default

class azure.ai.formrecognizer.CustomFormModelStatus(value)[source]

Status indicating the model’s readiness for use.

CREATING = 'creating'
INVALID = 'invalid'
READY = 'ready'
class azure.ai.formrecognizer.CustomFormSubmodel(**kwargs: Any)[source]

Represents a submodel that extracts fields from a specific type of form.

New in version v2.1: The model_id property, support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.CustomFormSubmodel[source]

Converts a dict in the shape of a CustomFormSubmodel to the model itself.

Parameters

data (dict) – A dictionary in the shape of CustomFormSubmodel.

Returns

CustomFormSubmodel

Return type

CustomFormSubmodel

to_dict()Dict[source]

Returns a dict representation of CustomFormSubmodel.

Returns

dict

Return type

dict

accuracy: float

The mean of the model’s field accuracies.

fields: Dict[str, azure.ai.formrecognizer._models.CustomFormModelField]

A dictionary of the fields that this submodel will recognize from the input document. The fields dictionary keys are the name of the field. For models trained with labels, this is the training-time label of the field. For models trained without labels, a unique name is generated for each field.

form_type: str

Type of form this submodel recognizes.

model_id: str

Model identifier of the submodel.

class azure.ai.formrecognizer.DocumentAnalysisApiVersion(value)[source]

Form Recognizer API versions supported by DocumentAnalysisClient and DocumentModelAdministrationClient.

V2022_08_31 = '2022-08-31'
V2023_07_31 = '2023-07-31'

This is the default version

class azure.ai.formrecognizer.DocumentAnalysisClient(endpoint: str, credential: Union[azure.core.credentials.AzureKeyCredential, azure.core.credentials.TokenCredential], **kwargs: Any)[source]

DocumentAnalysisClient analyzes information from documents and images, and classifies documents. It is the interface to use for analyzing with prebuilt models (receipts, business cards, invoices, identity documents, among others), analyzing layout from documents, analyzing general document types, and analyzing custom documents with built models (to see a full list of models supported by the service, see: https://aka.ms/azsdk/formrecognizer/models). It provides different methods based on inputs from a URL and inputs from a stream.

Note

DocumentAnalysisClient should be used with API versions 2022-08-31 and up. To use API versions <=v2.1, instantiate a FormRecognizerClient.

Parameters
Keyword Arguments

api_version (str or DocumentAnalysisApiVersion) – The API version of the service to use for requests. It defaults to the latest service version. Setting to an older version may result in reduced feature compatibility. To use API versions <=v2.1, instantiate a FormRecognizerClient.

New in version 2022-08-31: The DocumentAnalysisClient and its client methods.

Example:

Creating the DocumentAnalysisClient with an endpoint and API key.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import DocumentAnalysisClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

document_analysis_client = DocumentAnalysisClient(endpoint, AzureKeyCredential(key))
Creating the DocumentAnalysisClient with a token credential.
"""DefaultAzureCredential will use the values from these environment
variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET
"""
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.identity import DefaultAzureCredential

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
credential = DefaultAzureCredential()

document_analysis_client = DocumentAnalysisClient(endpoint, credential)
begin_analyze_document(model_id: str, document: Union[bytes, IO[bytes]], **kwargs: Any)azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.AnalyzeResult][source]

Analyze field text and semantic values from a given document.

Parameters
Keyword Arguments
  • pages (str) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=”1-3, 5-6”. Separate each page number or range with a comma.

  • locale (str) – Locale hint of the input document. See supported locales here: https://aka.ms/azsdk/formrecognizer/supportedlocales.

  • features (list[str]) – Document analysis features to enable.

Returns

An instance of an LROPoller. Call result() on the poller object to return a AnalyzeResult.

Return type

LROPoller[AnalyzeResult]

Raises

HttpResponseError

New in version 2023-07-31: The features keyword argument.

Example:

Analyze an invoice. For more samples see the samples folder.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import DocumentAnalysisClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

document_analysis_client = DocumentAnalysisClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)
with open(path_to_sample_documents, "rb") as f:
    poller = document_analysis_client.begin_analyze_document(
        "prebuilt-invoice", document=f, locale="en-US"
    )
invoices = poller.result()

for idx, invoice in enumerate(invoices.documents):
    print(f"--------Analyzing invoice #{idx + 1}--------")
    vendor_name = invoice.fields.get("VendorName")
    if vendor_name:
        print(
            f"Vendor Name: {vendor_name.value} has confidence: {vendor_name.confidence}"
        )
    vendor_address = invoice.fields.get("VendorAddress")
    if vendor_address:
        print(
            f"Vendor Address: {vendor_address.value} has confidence: {vendor_address.confidence}"
        )
    vendor_address_recipient = invoice.fields.get("VendorAddressRecipient")
    if vendor_address_recipient:
        print(
            f"Vendor Address Recipient: {vendor_address_recipient.value} has confidence: {vendor_address_recipient.confidence}"
        )
    customer_name = invoice.fields.get("CustomerName")
    if customer_name:
        print(
            f"Customer Name: {customer_name.value} has confidence: {customer_name.confidence}"
        )
    customer_id = invoice.fields.get("CustomerId")
    if customer_id:
        print(
            f"Customer Id: {customer_id.value} has confidence: {customer_id.confidence}"
        )
    customer_address = invoice.fields.get("CustomerAddress")
    if customer_address:
        print(
            f"Customer Address: {customer_address.value} has confidence: {customer_address.confidence}"
        )
    customer_address_recipient = invoice.fields.get("CustomerAddressRecipient")
    if customer_address_recipient:
        print(
            f"Customer Address Recipient: {customer_address_recipient.value} has confidence: {customer_address_recipient.confidence}"
        )
    invoice_id = invoice.fields.get("InvoiceId")
    if invoice_id:
        print(
            f"Invoice Id: {invoice_id.value} has confidence: {invoice_id.confidence}"
        )
    invoice_date = invoice.fields.get("InvoiceDate")
    if invoice_date:
        print(
            f"Invoice Date: {invoice_date.value} has confidence: {invoice_date.confidence}"
        )
    invoice_total = invoice.fields.get("InvoiceTotal")
    if invoice_total:
        print(
            f"Invoice Total: {invoice_total.value} has confidence: {invoice_total.confidence}"
        )
    due_date = invoice.fields.get("DueDate")
    if due_date:
        print(f"Due Date: {due_date.value} has confidence: {due_date.confidence}")
    purchase_order = invoice.fields.get("PurchaseOrder")
    if purchase_order:
        print(
            f"Purchase Order: {purchase_order.value} has confidence: {purchase_order.confidence}"
        )
    billing_address = invoice.fields.get("BillingAddress")
    if billing_address:
        print(
            f"Billing Address: {billing_address.value} has confidence: {billing_address.confidence}"
        )
    billing_address_recipient = invoice.fields.get("BillingAddressRecipient")
    if billing_address_recipient:
        print(
            f"Billing Address Recipient: {billing_address_recipient.value} has confidence: {billing_address_recipient.confidence}"
        )
    shipping_address = invoice.fields.get("ShippingAddress")
    if shipping_address:
        print(
            f"Shipping Address: {shipping_address.value} has confidence: {shipping_address.confidence}"
        )
    shipping_address_recipient = invoice.fields.get("ShippingAddressRecipient")
    if shipping_address_recipient:
        print(
            f"Shipping Address Recipient: {shipping_address_recipient.value} has confidence: {shipping_address_recipient.confidence}"
        )
    print("Invoice items:")
    for idx, item in enumerate(invoice.fields.get("Items").value):
        print(f"...Item #{idx + 1}")
        item_description = item.value.get("Description")
        if item_description:
            print(
                f"......Description: {item_description.value} has confidence: {item_description.confidence}"
            )
        item_quantity = item.value.get("Quantity")
        if item_quantity:
            print(
                f"......Quantity: {item_quantity.value} has confidence: {item_quantity.confidence}"
            )
        unit = item.value.get("Unit")
        if unit:
            print(f"......Unit: {unit.value} has confidence: {unit.confidence}")
        unit_price = item.value.get("UnitPrice")
        if unit_price:
            unit_price_code = unit_price.value.code if unit_price.value.code else ""
            print(
                f"......Unit Price: {unit_price.value}{unit_price_code} has confidence: {unit_price.confidence}"
            )
        product_code = item.value.get("ProductCode")
        if product_code:
            print(
                f"......Product Code: {product_code.value} has confidence: {product_code.confidence}"
            )
        item_date = item.value.get("Date")
        if item_date:
            print(
                f"......Date: {item_date.value} has confidence: {item_date.confidence}"
            )
        tax = item.value.get("Tax")
        if tax:
            print(f"......Tax: {tax.value} has confidence: {tax.confidence}")
        amount = item.value.get("Amount")
        if amount:
            print(
                f"......Amount: {amount.value} has confidence: {amount.confidence}"
            )
    subtotal = invoice.fields.get("SubTotal")
    if subtotal:
        print(f"Subtotal: {subtotal.value} has confidence: {subtotal.confidence}")
    total_tax = invoice.fields.get("TotalTax")
    if total_tax:
        print(
            f"Total Tax: {total_tax.value} has confidence: {total_tax.confidence}"
        )
    previous_unpaid_balance = invoice.fields.get("PreviousUnpaidBalance")
    if previous_unpaid_balance:
        print(
            f"Previous Unpaid Balance: {previous_unpaid_balance.value} has confidence: {previous_unpaid_balance.confidence}"
        )
    amount_due = invoice.fields.get("AmountDue")
    if amount_due:
        print(
            f"Amount Due: {amount_due.value} has confidence: {amount_due.confidence}"
        )
    service_start_date = invoice.fields.get("ServiceStartDate")
    if service_start_date:
        print(
            f"Service Start Date: {service_start_date.value} has confidence: {service_start_date.confidence}"
        )
    service_end_date = invoice.fields.get("ServiceEndDate")
    if service_end_date:
        print(
            f"Service End Date: {service_end_date.value} has confidence: {service_end_date.confidence}"
        )
    service_address = invoice.fields.get("ServiceAddress")
    if service_address:
        print(
            f"Service Address: {service_address.value} has confidence: {service_address.confidence}"
        )
    service_address_recipient = invoice.fields.get("ServiceAddressRecipient")
    if service_address_recipient:
        print(
            f"Service Address Recipient: {service_address_recipient.value} has confidence: {service_address_recipient.confidence}"
        )
    remittance_address = invoice.fields.get("RemittanceAddress")
    if remittance_address:
        print(
            f"Remittance Address: {remittance_address.value} has confidence: {remittance_address.confidence}"
        )
    remittance_address_recipient = invoice.fields.get("RemittanceAddressRecipient")
    if remittance_address_recipient:
        print(
            f"Remittance Address Recipient: {remittance_address_recipient.value} has confidence: {remittance_address_recipient.confidence}"
        )
Analyze a custom document. For more samples see the samples folder.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import DocumentAnalysisClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]
model_id = os.getenv("CUSTOM_BUILT_MODEL_ID", custom_model_id)

document_analysis_client = DocumentAnalysisClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)

# Make sure your document's type is included in the list of document types the custom model can analyze
with open(path_to_sample_documents, "rb") as f:
    poller = document_analysis_client.begin_analyze_document(
        model_id=model_id, document=f
    )
result = poller.result()

for idx, document in enumerate(result.documents):
    print(f"--------Analyzing document #{idx + 1}--------")
    print(f"Document has type {document.doc_type}")
    print(f"Document has document type confidence {document.confidence}")
    print(f"Document was analyzed with model with ID {result.model_id}")
    for name, field in document.fields.items():
        field_value = field.value if field.value else field.content
        print(
            f"......found field of type '{field.value_type}' with value '{field_value}' and with confidence {field.confidence}"
        )

# iterate over tables, lines, and selection marks on each page
for page in result.pages:
    print(f"\nLines found on page {page.page_number}")
    for line in page.lines:
        print(f"...Line '{line.content}'")
    for word in page.words:
        print(f"...Word '{word.content}' has a confidence of {word.confidence}")
    if page.selection_marks:
        print(f"\nSelection marks found on page {page.page_number}")
        for selection_mark in page.selection_marks:
            print(
                f"...Selection mark is '{selection_mark.state}' and has a confidence of {selection_mark.confidence}"
            )

for i, table in enumerate(result.tables):
    print(f"\nTable {i + 1} can be found on page:")
    for region in table.bounding_regions:
        print(f"...{region.page_number}")
    for cell in table.cells:
        print(
            f"...Cell[{cell.row_index}][{cell.column_index}] has text '{cell.content}'"
        )
print("-----------------------------------")
begin_analyze_document_from_url(model_id: str, document_url: str, **kwargs: Any)azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.AnalyzeResult][source]

Analyze field text and semantic values from a given document. The input must be the location (URL) of the document to be analyzed.

Parameters
  • model_id (str) – A unique model identifier can be passed in as a string. Use this to specify the custom model ID or prebuilt model ID. Prebuilt model IDs supported can be found here: https://aka.ms/azsdk/formrecognizer/models

  • document_url (str) – The URL of the document to analyze. The input must be a valid, properly encoded (i.e. encode special characters, such as empty spaces), and publicly accessible URL. For service supported file types, see: https://aka.ms/azsdk/formrecognizer/supportedfiles.

Keyword Arguments
  • pages (str) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=”1-3, 5-6”. Separate each page number or range with a comma.

  • locale (str) – Locale hint of the input document. See supported locales here: https://aka.ms/azsdk/formrecognizer/supportedlocales.

  • features (list[str]) – Document analysis features to enable.

Returns

An instance of an LROPoller. Call result() on the poller object to return a AnalyzeResult.

Return type

LROPoller[AnalyzeResult]

Raises

HttpResponseError

New in version 2023-07-31: The features keyword argument.

Example:

Analyze a receipt. For more samples see the samples folder.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import DocumentAnalysisClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

document_analysis_client = DocumentAnalysisClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)
url = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/main/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"
poller = document_analysis_client.begin_analyze_document_from_url(
    "prebuilt-receipt", document_url=url
)
receipts = poller.result()

for idx, receipt in enumerate(receipts.documents):
    print(f"--------Analysis of receipt #{idx + 1}--------")
    print(f"Receipt type: {receipt.doc_type if receipt.doc_type else 'N/A'}")
    merchant_name = receipt.fields.get("MerchantName")
    if merchant_name:
        print(
            f"Merchant Name: {merchant_name.value} has confidence: "
            f"{merchant_name.confidence}"
        )
    transaction_date = receipt.fields.get("TransactionDate")
    if transaction_date:
        print(
            f"Transaction Date: {transaction_date.value} has confidence: "
            f"{transaction_date.confidence}"
        )
    if receipt.fields.get("Items"):
        print("Receipt items:")
        for idx, item in enumerate(receipt.fields.get("Items").value):
            print(f"...Item #{idx + 1}")
            item_description = item.value.get("Description")
            if item_description:
                print(
                    f"......Item Description: {item_description.value} has confidence: "
                    f"{item_description.confidence}"
                )
            item_quantity = item.value.get("Quantity")
            if item_quantity:
                print(
                    f"......Item Quantity: {item_quantity.value} has confidence: "
                    f"{item_quantity.confidence}"
                )
            item_price = item.value.get("Price")
            if item_price:
                print(
                    f"......Individual Item Price: {item_price.value} has confidence: "
                    f"{item_price.confidence}"
                )
            item_total_price = item.value.get("TotalPrice")
            if item_total_price:
                print(
                    f"......Total Item Price: {item_total_price.value} has confidence: "
                    f"{item_total_price.confidence}"
                )
    subtotal = receipt.fields.get("Subtotal")
    if subtotal:
        print(f"Subtotal: {subtotal.value} has confidence: {subtotal.confidence}")
    tax = receipt.fields.get("TotalTax")
    if tax:
        print(f"Total tax: {tax.value} has confidence: {tax.confidence}")
    tip = receipt.fields.get("Tip")
    if tip:
        print(f"Tip: {tip.value} has confidence: {tip.confidence}")
    total = receipt.fields.get("Total")
    if total:
        print(f"Total: {total.value} has confidence: {total.confidence}")
    print("--------------------------------------")
begin_classify_document(classifier_id: str, document: Union[bytes, IO[bytes]], **kwargs: Any)azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.AnalyzeResult][source]

Classify a document using a document classifier. For more information on how to build a custom classifier model, see https://aka.ms/azsdk/formrecognizer/buildclassifiermodel.

Parameters
Returns

An instance of an LROPoller. Call result() on the poller object to return a AnalyzeResult.

Return type

LROPoller[AnalyzeResult]

Raises

HttpResponseError

New in version 2023-07-31: The begin_classify_document client method.

Example:

Classify a document. For more samples see the samples folder.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import DocumentAnalysisClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]
classifier_id = os.getenv("CLASSIFIER_ID", classifier_id)

document_analysis_client = DocumentAnalysisClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)
with open(path_to_sample_documents, "rb") as f:
    poller = document_analysis_client.begin_classify_document(
        classifier_id, document=f
    )
result = poller.result()

print("----Classified documents----")
for doc in result.documents:
    print(
        f"Found document of type '{doc.doc_type or 'N/A'}' with a confidence of {doc.confidence} contained on "
        f"the following pages: {[region.page_number for region in doc.bounding_regions]}"
    )
begin_classify_document_from_url(classifier_id: str, document_url: str, **kwargs: Any)azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.AnalyzeResult][source]

Classify a given document with a document classifier. For more information on how to build a custom classifier model, see https://aka.ms/azsdk/formrecognizer/buildclassifiermodel. The input must be the location (URL) of the document to be classified.

Parameters
  • classifier_id (str) – A unique document classifier identifier can be passed in as a string.

  • document_url (str) – The URL of the document to classify. The input must be a valid, properly encoded (i.e. encode special characters, such as empty spaces), and publicly accessible URL of one of the supported formats: https://aka.ms/azsdk/formrecognizer/supportedfiles.

Returns

An instance of an LROPoller. Call result() on the poller object to return a AnalyzeResult.

Return type

LROPoller[AnalyzeResult]

Raises

HttpResponseError

New in version 2023-07-31: The begin_classify_document_from_url client method.

Example:

Classify a document. For more samples see the samples folder.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import DocumentAnalysisClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]
classifier_id = os.getenv("CLASSIFIER_ID", classifier_id)

document_analysis_client = DocumentAnalysisClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)

url = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/main/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/IRS-1040.pdf"

poller = document_analysis_client.begin_classify_document_from_url(
    classifier_id, document_url=url
)
result = poller.result()

print("----Classified documents----")
for doc in result.documents:
    print(
        f"Found document of type '{doc.doc_type or 'N/A'}' with a confidence of {doc.confidence} contained on "
        f"the following pages: {[region.page_number for region in doc.bounding_regions]}"
    )
close()None[source]

Close the DocumentAnalysisClient session.

class azure.ai.formrecognizer.DocumentAnalysisError(**kwargs: Any)[source]

DocumentAnalysisError contains the details of the error returned by the service.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentAnalysisError[source]

Converts a dict in the shape of a DocumentAnalysisError to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentAnalysisError.

Returns

DocumentAnalysisError

Return type

DocumentAnalysisError

to_dict()Dict[source]

Returns a dict representation of DocumentAnalysisError.

Returns

dict

Return type

dict

code: str

Error code.

details: Optional[List[azure.ai.formrecognizer._models.DocumentAnalysisError]]

List of detailed errors.

innererror: Optional[azure.ai.formrecognizer._models.DocumentAnalysisInnerError]

Detailed error.

message: str

Error message.

target: Optional[str]

Target of the error.

class azure.ai.formrecognizer.DocumentAnalysisInnerError(**kwargs: Any)[source]

Inner error details for the DocumentAnalysisError.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentAnalysisInnerError[source]

Converts a dict in the shape of a DocumentAnalysisInnerError to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentAnalysisInnerError.

Returns

DocumentAnalysisInnerError

Return type

DocumentAnalysisInnerError

to_dict()Dict[source]

Returns a dict representation of DocumentAnalysisInnerError.

Returns

dict

Return type

dict

code: str

Error code.

innererror: Optional[azure.ai.formrecognizer._models.DocumentAnalysisInnerError]

Detailed error.

message: Optional[str]

Error message.

class azure.ai.formrecognizer.DocumentBarcode(**kwargs: Any)[source]

A barcode object.

classmethod from_dict(data: Dict[str, Any])azure.ai.formrecognizer._models.DocumentBarcode[source]

Converts a dict in the shape of a DocumentBarcode to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentBarcode.

Returns

DocumentBarcode

Return type

DocumentBarcode

to_dict()Dict[str, Any][source]

Returns a dict representation of DocumentBarcode.

Returns

Dict[str, Any]

Return type

Dict[str, Any]

confidence: float

Confidence of correctly extracting the barcode.

kind: typing_extensions.Literal[QRCode, PDF417, UPCA, UPCE, Code39, Code128, EAN8, EAN13, DataBar, Code93, Codabar, DataBarExpanded, ITF, MicroQRCode, Aztec, DataMatrix, MaxiCode]

Barcode kind. Known values are “QRCode”, “PDF417”, “UPCA”, “UPCE”, “Code39”, “Code128”, “EAN8”, “EAN13”, “DataBar”, “Code93”, “Codabar”, “DataBarExpanded”, “ITF”, “MicroQRCode”, “Aztec”, “DataMatrix”, “MaxiCode”.

polygon: Sequence[azure.ai.formrecognizer._models.Point]

Bounding polygon of the barcode.

span: azure.ai.formrecognizer._models.DocumentSpan

Location of the barcode in the reading order concatenated content.

value: str

Barcode value.

class azure.ai.formrecognizer.DocumentClassifierDetails(**kwargs: Any)[source]

Document classifier information. Includes the doc types that the model can classify.

classmethod from_dict(data: Dict[str, Any])azure.ai.formrecognizer._models.DocumentClassifierDetails[source]

Converts a dict in the shape of a DocumentClassifierDetails to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentClassifierDetails.

Returns

DocumentClassifierDetails

Return type

DocumentClassifierDetails

to_dict()Dict[str, Any][source]

Returns a dict representation of DocumentClassifierDetails.

Returns

Dict[str, Any]

Return type

Dict[str, Any]

api_version: str

API version used to create this document classifier.

classifier_id: str

Unique document classifier name.

created_on: datetime.datetime

Date and time (UTC) when the document classifier was created.

description: Optional[str]

Document classifier description.

doc_types: Mapping[str, azure.ai.formrecognizer._models.ClassifierDocumentTypeDetails]

List of document types to classify against.

expires_on: Optional[datetime.datetime]

Date and time (UTC) when the document classifier will expire.

class azure.ai.formrecognizer.DocumentField(**kwargs: Any)[source]

An object representing the content and location of a document field value.

New in version 2023-07-31: The boolean value_type and bool value

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentField[source]

Converts a dict in the shape of a DocumentField to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentField.

Returns

DocumentField

Return type

DocumentField

to_dict()Dict[source]

Returns a dict representation of DocumentField.

Returns

dict

Return type

dict

bounding_regions: Optional[List[azure.ai.formrecognizer._models.BoundingRegion]]

Bounding regions covering the field.

confidence: float

The confidence of correctly extracting the field.

content: Optional[str]

The field’s content.

spans: Optional[List[azure.ai.formrecognizer._models.DocumentSpan]]

Location of the field in the reading order concatenated content.

value: Optional[Union[str, int, float, bool, datetime.date, datetime.time, azure.ai.formrecognizer._models.CurrencyValue, azure.ai.formrecognizer._models.AddressValue, Dict[str, azure.ai.formrecognizer._models.DocumentField], List[azure.ai.formrecognizer._models.DocumentField]]]

The value for the recognized field. Its semantic data type is described by value_type. If the value is extracted from the document, but cannot be normalized to its type, then access the content property for a textual representation of the value.

value_type: str

The type of value found on DocumentField. Possible types include: “string”, “date”, “time”, “phoneNumber”, “float”, “integer”, “selectionMark”, “countryRegion”, “signature”, “currency”, “address”, “boolean”, “list”, “dictionary”.

class azure.ai.formrecognizer.DocumentFormula(**kwargs: Any)[source]

A formula object.

classmethod from_dict(data: Dict[str, Any])azure.ai.formrecognizer._models.DocumentFormula[source]

Converts a dict in the shape of a DocumentFormula to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentFormula.

Returns

DocumentFormula

Return type

DocumentFormula

to_dict()Dict[str, Any][source]

Returns a dict representation of DocumentFormula.

Returns

Dict[str, Any]

Return type

Dict[str, Any]

confidence: float

Confidence of correctly extracting the formula.

kind: typing_extensions.Literal[inline, display]

Formula kind. Known values are “inline”, “display”.

polygon: Sequence[azure.ai.formrecognizer._models.Point]

Bounding polygon of the formula.

span: azure.ai.formrecognizer._models.DocumentSpan

Location of the formula in the reading order concatenated content.

value: str

LaTex expression describing the formula.

class azure.ai.formrecognizer.DocumentKeyValueElement(**kwargs: Any)[source]

An object representing the field key or value in a key-value pair.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentKeyValueElement[source]

Converts a dict in the shape of a DocumentKeyValueElement to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentKeyValueElement.

Returns

DocumentKeyValueElement

Return type

DocumentKeyValueElement

to_dict()Dict[source]

Returns a dict representation of DocumentKeyValueElement.

Returns

dict

Return type

dict

bounding_regions: Optional[List[azure.ai.formrecognizer._models.BoundingRegion]]

Bounding regions covering the key-value element.

content: str

Concatenated content of the key-value element in reading order.

spans: List[azure.ai.formrecognizer._models.DocumentSpan]

Location of the key-value element in the reading order of the concatenated content.

class azure.ai.formrecognizer.DocumentKeyValuePair(**kwargs: Any)[source]

An object representing a document field with distinct field label (key) and field value (may be empty).

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentKeyValuePair[source]

Converts a dict in the shape of a DocumentKeyValuePair to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentKeyValuePair.

Returns

DocumentKeyValuePair

Return type

DocumentKeyValuePair

to_dict()Dict[source]

Returns a dict representation of DocumentKeyValuePair.

Returns

dict

Return type

dict

confidence: float

Confidence of correctly extracting the key-value pair.

key: azure.ai.formrecognizer._models.DocumentKeyValueElement

Field label of the key-value pair.

value: Optional[azure.ai.formrecognizer._models.DocumentKeyValueElement]

Field value of the key-value pair.

class azure.ai.formrecognizer.DocumentLanguage(**kwargs: Any)[source]

An object representing the detected language for a given text span.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentLanguage[source]

Converts a dict in the shape of a DocumentLanguage to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentLanguage.

Returns

DocumentLanguage

Return type

DocumentLanguage

to_dict()Dict[source]

Returns a dict representation of DocumentLanguage.

Returns

dict

Return type

dict

confidence: float

Confidence of correctly identifying the language.

locale: str

Detected language code. Value may be an ISO 639-1 language code (ex. “en”, “fr”) or a BCP 47 language tag (ex. “zh-Hans”).

spans: List[azure.ai.formrecognizer._models.DocumentSpan]

Location of the text elements in the concatenated content that the language applies to.

class azure.ai.formrecognizer.DocumentLine(**kwargs: Any)[source]

A content line object representing the content found on a single line of the document.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentLine[source]

Converts a dict in the shape of a DocumentLine to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentLine.

Returns

DocumentLine

Return type

DocumentLine

get_words()Iterable[azure.ai.formrecognizer._models.DocumentWord][source]

Get the words found in the spans of this DocumentLine.

Returns

iterable[DocumentWord]

Return type

iterable[DocumentWord]

to_dict()Dict[source]

Returns a dict representation of DocumentLine.

Returns

dict

Return type

dict

content: str

Concatenated content of the contained elements in reading order.

polygon: Sequence[azure.ai.formrecognizer._models.Point]

Bounding polygon of the line.

spans: List[azure.ai.formrecognizer._models.DocumentSpan]

Location of the line in the reading order concatenated content.

class azure.ai.formrecognizer.DocumentModelAdministrationClient(endpoint: str, credential: Union[azure.core.credentials.AzureKeyCredential, azure.core.credentials.TokenCredential], **kwargs: Any)[source]

DocumentModelAdministrationClient is the Form Recognizer interface to use for building and managing models.

It provides methods for building models and classifiers, as well as methods for viewing and deleting models and classifiers, viewing model and classifier operations, accessing account information, copying models to another Form Recognizer resource, and composing a new model from a collection of existing models.

Note

DocumentModelAdministrationClient should be used with API versions 2022-08-31 and up. To use API versions <=v2.1, instantiate a FormTrainingClient.

Parameters
Keyword Arguments

api_version (str or DocumentAnalysisApiVersion) – The API version of the service to use for requests. It defaults to the latest service version. Setting to an older version may result in reduced feature compatibility. To use API versions <=v2.1, instantiate a FormTrainingClient.

New in version 2022-08-31: The DocumentModelAdministrationClient and its client methods.

Example:

Creating the DocumentModelAdministrationClient with an endpoint and API key.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import DocumentModelAdministrationClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

document_model_admin_client = DocumentModelAdministrationClient(
    endpoint, AzureKeyCredential(key)
)
Creating the DocumentModelAdministrationClient with a token credential.
"""DefaultAzureCredential will use the values from these environment
variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET
"""
from azure.ai.formrecognizer import DocumentModelAdministrationClient
from azure.identity import DefaultAzureCredential

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
credential = DefaultAzureCredential()

document_model_admin_client = DocumentModelAdministrationClient(
    endpoint, credential
)
begin_build_document_classifier(doc_types: Mapping[str, azure.ai.formrecognizer._models.ClassifierDocumentTypeDetails], *, classifier_id: Optional[str] = None, description: Optional[str] = None, **kwargs: Any)azure.ai.formrecognizer._polling.DocumentModelAdministrationLROPoller[azure.ai.formrecognizer._models.DocumentClassifierDetails][source]

Build a document classifier. For more information on how to build and train a custom classifier model, see https://aka.ms/azsdk/formrecognizer/buildclassifiermodel.

Parameters

doc_types (Mapping[str, ClassifierDocumentTypeDetails]) – Mapping of document types to classify against.

Keyword Arguments
  • classifier_id (str) – Unique document classifier name. If not specified, a classifier ID will be created for you.

  • description (str) – Document classifier description.

Returns

An instance of an DocumentModelAdministrationLROPoller. Call result() on the poller object to return a DocumentClassifierDetails.

Return type

DocumentModelAdministrationLROPoller[DocumentClassifierDetails]

Raises

HttpResponseError

New in version 2023-07-31: The begin_build_document_classifier client method.

Example:

Build a document classifier.
import os
from azure.ai.formrecognizer import (
    DocumentModelAdministrationClient,
    ClassifierDocumentTypeDetails,
    BlobSource,
    BlobFileListSource,
)
from azure.core.credentials import AzureKeyCredential

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]
container_sas_url = os.environ["CLASSIFIER_CONTAINER_SAS_URL"]

document_model_admin_client = DocumentModelAdministrationClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)

poller = document_model_admin_client.begin_build_document_classifier(
    doc_types={
        "IRS-1040-A": ClassifierDocumentTypeDetails(
            source=BlobSource(
                container_url=container_sas_url, prefix="IRS-1040-A/train"
            )
        ),
        "IRS-1040-D": ClassifierDocumentTypeDetails(
            source=BlobFileListSource(
                container_url=container_sas_url, file_list="IRS-1040-D.jsonl"
            )
        ),
    },
    description="IRS document classifier",
)
result = poller.result()
print(f"Classifier ID: {result.classifier_id}")
print(f"API version used to build the classifier model: {result.api_version}")
print(f"Classifier description: {result.description}")
print(f"Document classes used for training the model:")
for doc_type, details in result.doc_types.items():
    print(f"Document type: {doc_type}")
    print(f"Container source: {details.source.container_url}\n")
begin_build_document_model(build_mode: Union[str, ModelBuildMode], *, blob_container_url: str, prefix: Optional[str] = 'None', model_id: Optional[str] = 'None', description: Optional[str] = 'None', tags: Optional[Mapping[str, str]] = 'None', **kwargs: Any)DocumentModelAdministrationLROPoller[DocumentModelDetails][source]
begin_build_document_model(build_mode: Union[str, ModelBuildMode], *, blob_container_url: str, file_list: str, model_id: Optional[str] = 'None', description: Optional[str] = 'None', tags: Optional[Mapping[str, str]] = 'None', **kwargs: Any)DocumentModelAdministrationLROPoller[DocumentModelDetails]

Build a custom document model.

The request must include a blob_container_url keyword parameter that is an externally accessible Azure storage blob container URI (preferably a Shared Access Signature URI). Note that a container URI (without SAS) is accepted only when the container is public or has a managed identity configured, see more about configuring managed identities to work with Form Recognizer here: https://docs.microsoft.com/azure/applied-ai-services/form-recognizer/managed-identities. Models are built using documents that are of the following content type - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’, ‘image/bmp’, or ‘image/heif’. Other types of content in the container is ignored.

Parameters

build_mode (str or ModelBuildMode) – The custom model build mode. Possible values include: “template”, “neural”. For more information about build modes, see: https://aka.ms/azsdk/formrecognizer/buildmode.

Keyword Arguments
  • blob_container_url (str) – An Azure Storage blob container’s SAS URI. A container URI (without SAS) can be used if the container is public or has a managed identity configured. For more information on setting up a training data set, see: https://aka.ms/azsdk/formrecognizer/buildtrainingset.

  • model_id (str) – A unique ID for your model. If not specified, a model ID will be created for you.

  • description (str) – An optional description to add to the model.

  • prefix (str) – A case-sensitive prefix string to filter documents in the blob container url path. For example, when using an Azure storage blob URI, use the prefix to restrict sub folders. prefix should end in ‘/’ to avoid cases where filenames share the same prefix.

  • file_list (str) – Path to a JSONL file within the container specifying a subset of documents for training.

  • tags (dict[str, str]) – List of user defined key-value tag attributes associated with the model.

Returns

An instance of an DocumentModelAdministrationLROPoller. Call result() on the poller object to return a DocumentModelDetails.

Return type

DocumentModelAdministrationLROPoller[DocumentModelDetails]

Raises

HttpResponseError

New in version 2023-07-31: The file_list keyword argument.

Example:

Building a model from training files.
from azure.ai.formrecognizer import (
    DocumentModelAdministrationClient,
    ModelBuildMode,
)
from azure.core.credentials import AzureKeyCredential

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]
container_sas_url = os.environ["CONTAINER_SAS_URL"]

document_model_admin_client = DocumentModelAdministrationClient(
    endpoint, AzureKeyCredential(key)
)
poller = document_model_admin_client.begin_build_document_model(
    ModelBuildMode.TEMPLATE,
    blob_container_url=container_sas_url,
    description="my model description",
)
model = poller.result()

print(f"Model ID: {model.model_id}")
print(f"Description: {model.description}")
print(f"Model created on: {model.created_on}")
print(f"Model expires on: {model.expires_on}")
print("Doc types the model can recognize:")
for name, doc_type in model.doc_types.items():
    print(
        f"Doc Type: '{name}' built with '{doc_type.build_mode}' mode which has the following fields:"
    )
    for field_name, field in doc_type.field_schema.items():
        print(
            f"Field: '{field_name}' has type '{field['type']}' and confidence score "
            f"{doc_type.field_confidence[field_name]}"
        )
begin_compose_document_model(component_model_ids: List[str], **kwargs: Any)azure.ai.formrecognizer._polling.DocumentModelAdministrationLROPoller[azure.ai.formrecognizer._models.DocumentModelDetails][source]

Creates a composed document model from a collection of existing models.

A composed model allows multiple models to be called with a single model ID. When a document is submitted to be analyzed with a composed model ID, a classification step is first performed to route it to the correct custom model.

Parameters

component_model_ids (list[str]) – List of model IDs to use in the composed model.

Keyword Arguments
  • model_id (str) – A unique ID for your composed model. If not specified, a model ID will be created for you.

  • description (str) – An optional description to add to the model.

  • tags (dict[str, str]) – List of user defined key-value tag attributes associated with the model.

Returns

An instance of an DocumentModelAdministrationLROPoller. Call result() on the poller object to return a DocumentModelDetails.

Return type

DocumentModelAdministrationLROPoller[DocumentModelDetails]

Raises

HttpResponseError

Example:

Creating a composed model with existing models.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import (
    DocumentModelAdministrationClient,
    ModelBuildMode,
)

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]
po_supplies = os.environ["PURCHASE_ORDER_OFFICE_SUPPLIES_SAS_URL"]
po_equipment = os.environ["PURCHASE_ORDER_OFFICE_EQUIPMENT_SAS_URL"]
po_furniture = os.environ["PURCHASE_ORDER_OFFICE_FURNITURE_SAS_URL"]
po_cleaning_supplies = os.environ["PURCHASE_ORDER_OFFICE_CLEANING_SUPPLIES_SAS_URL"]

document_model_admin_client = DocumentModelAdministrationClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)
supplies_poller = document_model_admin_client.begin_build_document_model(
    ModelBuildMode.TEMPLATE,
    blob_container_url=po_supplies,
    description="Purchase order-Office supplies",
)
equipment_poller = document_model_admin_client.begin_build_document_model(
    ModelBuildMode.TEMPLATE,
    blob_container_url=po_equipment,
    description="Purchase order-Office Equipment",
)
furniture_poller = document_model_admin_client.begin_build_document_model(
    ModelBuildMode.TEMPLATE,
    blob_container_url=po_furniture,
    description="Purchase order-Furniture",
)
cleaning_supplies_poller = document_model_admin_client.begin_build_document_model(
    ModelBuildMode.TEMPLATE,
    blob_container_url=po_cleaning_supplies,
    description="Purchase order-Cleaning Supplies",
)
supplies_model = supplies_poller.result()
equipment_model = equipment_poller.result()
furniture_model = furniture_poller.result()
cleaning_supplies_model = cleaning_supplies_poller.result()

purchase_order_models = [
    supplies_model.model_id,
    equipment_model.model_id,
    furniture_model.model_id,
    cleaning_supplies_model.model_id,
]

poller = document_model_admin_client.begin_compose_document_model(
    purchase_order_models, description="Office Supplies Composed Model"
)
model = poller.result()

print("Office Supplies Composed Model Info:")
print(f"Model ID: {model.model_id}")
print(f"Description: {model.description}")
print(f"Model created on: {model.created_on}")
print(f"Model expires on: {model.expires_on}")
print("Doc types the model can recognize:")
for name, doc_type in model.doc_types.items():
    print(f"Doc Type: '{name}' which has the following fields:")
    for field_name, field in doc_type.field_schema.items():
        print(
            f"Field: '{field_name}' has type '{field['type']}' and confidence score "
            f"{doc_type.field_confidence[field_name]}"
        )
begin_copy_document_model_to(model_id: str, target: TargetAuthorization, **kwargs: Any)azure.ai.formrecognizer._polling.DocumentModelAdministrationLROPoller[azure.ai.formrecognizer._models.DocumentModelDetails][source]

Copy a document model stored in this resource (the source) to the user specified target Form Recognizer resource.

This should be called with the source Form Recognizer resource (with the model that is intended to be copied). The target parameter should be supplied from the target resource’s output from calling the get_copy_authorization() method.

Parameters
  • model_id (str) – Model identifier of the model to copy to target resource.

  • target (TargetAuthorization) – The copy authorization generated from the target resource’s call to get_copy_authorization().

Returns

An instance of a DocumentModelAdministrationLROPoller. Call result() on the poller object to return a DocumentModelDetails.

Return type

DocumentModelAdministrationLROPoller[DocumentModelDetails]

Raises

HttpResponseError

Example:

Copy a model from the source resource to the target resource
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import DocumentModelAdministrationClient

source_endpoint = os.environ["AZURE_FORM_RECOGNIZER_SOURCE_ENDPOINT"]
source_key = os.environ["AZURE_FORM_RECOGNIZER_SOURCE_KEY"]
target_endpoint = os.environ["AZURE_FORM_RECOGNIZER_TARGET_ENDPOINT"]
target_key = os.environ["AZURE_FORM_RECOGNIZER_TARGET_KEY"]
source_model_id = os.getenv("AZURE_SOURCE_MODEL_ID", custom_model_id)

target_client = DocumentModelAdministrationClient(
    endpoint=target_endpoint, credential=AzureKeyCredential(target_key)
)

target = target_client.get_copy_authorization(
    description="model copied from other resource"
)

source_client = DocumentModelAdministrationClient(
    endpoint=source_endpoint, credential=AzureKeyCredential(source_key)
)
poller = source_client.begin_copy_document_model_to(
    model_id=source_model_id,
    target=target,  # output from target client's call to get_copy_authorization()
)
copied_over_model = poller.result()

print(f"Model ID: {copied_over_model.model_id}")
print(f"Description: {copied_over_model.description}")
print(f"Model created on: {copied_over_model.created_on}")
print(f"Model expires on: {copied_over_model.expires_on}")
print("Doc types the model can recognize:")
for name, doc_type in copied_over_model.doc_types.items():
    print(f"Doc Type: '{name}' which has the following fields:")
    for field_name, field in doc_type.field_schema.items():
        print(
            f"Field: '{field_name}' has type '{field['type']}' and confidence score "
            f"{doc_type.field_confidence[field_name]}"
        )
close()None[source]

Close the DocumentModelAdministrationClient session.

delete_document_classifier(classifier_id: str, **kwargs: Any)None[source]

Delete a document classifier.

Parameters

classifier_id (str) – Classifier identifier.

Returns

None

Return type

None

Raises

HttpResponseError or ResourceNotFoundError

New in version 2023-07-31: The delete_document_classifier client method.

Example:

Delete a classifier.
document_model_admin_client.delete_document_classifier(
    classifier_id=my_classifier.classifier_id
)

try:
    document_model_admin_client.get_document_classifier(
        classifier_id=my_classifier.classifier_id
    )
except ResourceNotFoundError:
    print(f"Successfully deleted classifier with ID {my_classifier.classifier_id}")
delete_document_model(model_id: str, **kwargs: Any)None[source]

Delete a custom document model.

Parameters

model_id (str) – Model identifier.

Returns

None

Return type

None

Raises

HttpResponseError or ResourceNotFoundError

Example:

Delete a model.
document_model_admin_client.delete_document_model(model_id=my_model.model_id)

try:
    document_model_admin_client.get_document_model(model_id=my_model.model_id)
except ResourceNotFoundError:
    print(f"Successfully deleted model with ID {my_model.model_id}")
get_copy_authorization(**kwargs: Any)TargetAuthorization[source]

Generate authorization for copying a custom model into the target Form Recognizer resource.

This should be called by the target resource (where the model will be copied to) and the output can be passed as the target parameter into begin_copy_document_model_to().

Keyword Arguments
  • model_id (str) – A unique ID for your copied model. If not specified, a model ID will be created for you.

  • description (str) – An optional description to add to the model.

  • tags (dict[str, str]) – List of user defined key-value tag attributes associated with the model.

Returns

A dictionary with values necessary for the copy authorization.

Return type

TargetAuthorization

Raises

HttpResponseError

get_document_analysis_client(**kwargs: Any)azure.ai.formrecognizer._document_analysis_client.DocumentAnalysisClient[source]

Get an instance of a DocumentAnalysisClient from DocumentModelAdministrationClient.

Return type

DocumentAnalysisClient

Returns

A DocumentAnalysisClient

get_document_classifier(classifier_id: str, **kwargs: Any)azure.ai.formrecognizer._models.DocumentClassifierDetails[source]

Get a document classifier by its ID.

Parameters

classifier_id (str) – Classifier identifier.

Returns

DocumentClassifierDetails

Return type

DocumentClassifierDetails

Raises

HttpResponseError or ResourceNotFoundError

New in version 2023-07-31: The get_document_classifier client method.

Example:

Get a classifier by its ID.
my_classifier = document_model_admin_client.get_document_classifier(
    classifier_id=classifier_model.classifier_id
)
print(f"\nClassifier ID: {my_classifier.classifier_id}")
print(f"Description: {my_classifier.description}")
print(f"Classifier created on: {my_classifier.created_on}")
get_document_model(model_id: str, **kwargs: Any)azure.ai.formrecognizer._models.DocumentModelDetails[source]

Get a document model by its ID.

Parameters

model_id (str) – Model identifier.

Returns

DocumentModelDetails

Return type

DocumentModelDetails

Raises

HttpResponseError or ResourceNotFoundError

Example:

Get a model by its ID.
my_model = document_model_admin_client.get_document_model(model_id=model.model_id)
print(f"\nModel ID: {my_model.model_id}")
print(f"Description: {my_model.description}")
print(f"Model created on: {my_model.created_on}")
print(f"Model expires on: {my_model.expires_on}")
get_operation(operation_id: str, **kwargs: Any)azure.ai.formrecognizer._models.OperationDetails[source]

Get an operation by its ID.

Get an operation associated with the Form Recognizer resource. Note that operation information only persists for 24 hours. If the document model operation was successful, the model can be accessed using the get_document_model() or list_document_models() APIs.

Parameters

operation_id (str) – The operation ID.

Returns

OperationDetails

Return type

OperationDetails

Raises

HttpResponseError

Example:

Get a document model operation by its ID.
# Get an operation by ID
if operations:
    print(f"\nGetting operation info by ID: {operations[0].operation_id}")
    operation_info = document_model_admin_client.get_operation(
        operations[0].operation_id
    )
    if operation_info.status == "succeeded":
        print(f"My {operation_info.kind} operation is completed.")
        result = operation_info.result
        if result is not None:
            if operation_info.kind == "documentClassifierBuild":
                print(f"Classifier ID: {result.classifier_id}")
            else:
                print(f"Model ID: {result.model_id}")
    elif operation_info.status == "failed":
        print(f"My {operation_info.kind} operation failed.")
        error = operation_info.error
        if error is not None:
            print(f"{error.code}: {error.message}")
    else:
        print(f"My operation status is {operation_info.status}")
else:
    print("No operations found.")
get_resource_details(**kwargs: Any)azure.ai.formrecognizer._models.ResourceDetails[source]

Get information about the models under the Form Recognizer resource.

Returns

Summary of custom models under the resource - model count and limit.

Return type

ResourceDetails

Raises

HttpResponseError

Example:

Get model counts and limits under the Form Recognizer resource.
document_model_admin_client = DocumentModelAdministrationClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)

account_details = document_model_admin_client.get_resource_details()
print(
    f"Our resource has {account_details.custom_document_models.count} custom models, "
    f"and we can have at most {account_details.custom_document_models.limit} custom models"
)
neural_models = account_details.neural_document_model_quota
print(
    f"The quota limit for custom neural document models is {neural_models.quota} and the resource has"
    f"used {neural_models.used}. The resource quota will reset on {neural_models.quota_resets_on}"
)
list_document_classifiers(**kwargs: Any)azure.core.paging.ItemPaged[azure.ai.formrecognizer._models.DocumentClassifierDetails][source]

List information for each document classifier, including its classifier ID, description, and when it was created.

Returns

Pageable of DocumentClassifierDetails.

Return type

ItemPaged[DocumentClassifierDetails]

Raises

HttpResponseError

New in version 2023-07-31: The list_document_classifiers client method.

Example:

List all classifiers that were built successfully under the Form Recognizer resource.
classifiers = document_model_admin_client.list_document_classifiers()

print("We have the following 'ready' models with IDs and descriptions:")
for classifier in classifiers:
    print(f"{classifier.classifier_id} | {classifier.description}")
list_document_models(**kwargs: Any)azure.core.paging.ItemPaged[azure.ai.formrecognizer._models.DocumentModelSummary][source]

List information for each model, including its model ID, description, and when it was created.

Returns

Pageable of DocumentModelSummary.

Return type

ItemPaged[DocumentModelSummary]

Raises

HttpResponseError

Example:

List all models that were built successfully under the Form Recognizer resource.
models = document_model_admin_client.list_document_models()

print("We have the following 'ready' models with IDs and descriptions:")
for model in models:
    print(f"{model.model_id} | {model.description}")
list_operations(**kwargs: Any)azure.core.paging.ItemPaged[azure.ai.formrecognizer._models.OperationSummary][source]

List information for each operation.

Lists all operations associated with the Form Recognizer resource. Note that operation information only persists for 24 hours. If a document model operation was successful, the document model can be accessed using the get_document_model() or list_document_models() APIs.

Returns

A pageable of OperationSummary.

Return type

ItemPaged[OperationSummary]

Raises

HttpResponseError

Example:

List all document model operations in the past 24 hours.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import DocumentModelAdministrationClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

document_model_admin_client = DocumentModelAdministrationClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)

operations = list(document_model_admin_client.list_operations())

print("The following document model operations exist under my resource:")
for operation in operations:
    print(f"\nOperation ID: {operation.operation_id}")
    print(f"Operation kind: {operation.kind}")
    print(f"Operation status: {operation.status}")
    print(f"Operation percent completed: {operation.percent_completed}")
    print(f"Operation created on: {operation.created_on}")
    print(f"Operation last updated on: {operation.last_updated_on}")
    print(
        f"Resource location of successful operation: {operation.resource_location}"
    )
class azure.ai.formrecognizer.DocumentModelAdministrationLROPoller(*args, **kwargs)[source]

Implements a protocol followed by returned poller objects.

add_done_callback(func: Callable)None[source]
continuation_token()str[source]
done()bool[source]
polling_method()azure.core.polling._poller.PollingMethod[PollingReturnType_co][source]
remove_done_callback(func: Callable)None[source]
result(timeout: Optional[int] = None)PollingReturnType_co[source]
status()str[source]
wait(timeout: Optional[float] = None)None[source]
property details
class azure.ai.formrecognizer.DocumentModelDetails(**kwargs: Any)[source]

Document model information. Includes the doc types that the model can analyze.

New in version 2023-07-31: The expires_on property.

classmethod from_dict(data: Dict[str, Any])azure.ai.formrecognizer._models.DocumentModelDetails[source]

Converts a dict in the shape of a DocumentModelDetails to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentModelDetails.

Returns

DocumentModelDetails

Return type

DocumentModelDetails

to_dict()Dict[str, Any][source]

Returns a dict representation of DocumentModelDetails.

Returns

Dict[str, Any]

Return type

Dict[str, Any]

api_version: Optional[str]

API version used to create this model.

created_on: datetime.datetime

Date and time (UTC) when the model was created.

description: Optional[str]

A description for the model.

doc_types: Optional[Dict[str, azure.ai.formrecognizer._models.DocumentTypeDetails]]

Supported document types, including the fields for each document and their types.

expires_on: Optional[datetime.datetime]

Date and time (UTC) when the document model will expire.

model_id: str

Unique model id.

tags: Optional[Dict[str, str]]

List of user defined key-value tag attributes associated with the model.

class azure.ai.formrecognizer.DocumentModelSummary(**kwargs: Any)[source]

A summary of document model information including the model ID, its description, and when the model was created.

New in version 2023-07-31: The expires_on property.

classmethod from_dict(data: Dict[str, Any])azure.ai.formrecognizer._models.DocumentModelSummary[source]

Converts a dict in the shape of a DocumentModelSummary to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentModelSummary.

Returns

DocumentModelSummary

Return type

DocumentModelSummary

to_dict()Dict[str, Any][source]

Returns a dict representation of DocumentModelSummary.

Returns

Dict[str, Any]

Return type

Dict[str, Any]

api_version: Optional[str]

API version used to create this model.

created_on: datetime.datetime

Date and time (UTC) when the model was created.

description: Optional[str]

A description for the model.

expires_on: Optional[datetime.datetime]

Date and time (UTC) when the document model will expire.

model_id: str

Unique model id.

tags: Optional[Dict[str, str]]

List of user defined key-value tag attributes associated with the model.

class azure.ai.formrecognizer.DocumentPage(**kwargs: Any)[source]

Content and layout elements extracted from a page of the input.

New in version 2023-07-31: The barcodes, and formulas properties.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentPage[source]

Converts a dict in the shape of a DocumentPage to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentPage.

Returns

DocumentPage

Return type

DocumentPage

to_dict()Dict[source]

Returns a dict representation of DocumentPage.

Returns

dict

Return type

dict

angle: Optional[float]

The general orientation of the content in clockwise direction, measured in degrees between (-180, 180].

barcodes: List[azure.ai.formrecognizer._models.DocumentBarcode]

Extracted barcodes from the page.

formulas: List[azure.ai.formrecognizer._models.DocumentFormula]

Extracted formulas from the page

height: Optional[float]

The height of the image/PDF in pixels/inches, respectively.

lines: List[azure.ai.formrecognizer._models.DocumentLine]

Extracted lines from the page, potentially containing both textual and visual elements.

page_number: int

1-based page number in the input document.

selection_marks: List[azure.ai.formrecognizer._models.DocumentSelectionMark]

Extracted selection marks from the page.

spans: List[azure.ai.formrecognizer._models.DocumentSpan]

Location of the page in the reading order concatenated content.

unit: Optional[str]

The unit used by the width, height, and bounding polygon properties. For images, the unit is “pixel”. For PDF, the unit is “inch”. Possible values include: “pixel”, “inch”.

width: Optional[float]

The width of the image/PDF in pixels/inches, respectively.

words: List[azure.ai.formrecognizer._models.DocumentWord]

Extracted words from the page.

class azure.ai.formrecognizer.DocumentParagraph(**kwargs: Any)[source]

A paragraph object generally consisting of contiguous lines with common alignment and spacing.

New in version 2023-07-31: The formulaBlock role.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentParagraph[source]

Converts a dict in the shape of a DocumentParagraph to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentParagraph.

Returns

DocumentParagraph

Return type

DocumentParagraph

to_dict()Dict[source]

Returns a dict representation of DocumentParagraph.

Returns

dict

Return type

dict

bounding_regions: Optional[List[azure.ai.formrecognizer._models.BoundingRegion]]

Bounding regions covering the paragraph.

content: str

Concatenated content of the paragraph in reading order.

role: Optional[str]

“pageHeader”, “pageFooter”, “pageNumber”, “title”, “sectionHeading”, “footnote”, “formulaBlock”.

Type

Semantic role of the paragraph. Known values are

spans: List[azure.ai.formrecognizer._models.DocumentSpan]

Location of the paragraph in the reading order concatenated content.

class azure.ai.formrecognizer.DocumentSelectionMark(**kwargs: Any)[source]

A selection mark object representing check boxes, radio buttons, and other elements indicating a selection.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentSelectionMark[source]

Converts a dict in the shape of a DocumentSelectionMark to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentSelectionMark.

Returns

DocumentSelectionMark

Return type

DocumentSelectionMark

to_dict()Dict[source]

Returns a dict representation of DocumentSelectionMark.

Returns

dict

Return type

dict

confidence: float

Confidence of correctly extracting the selection mark.

polygon: Sequence[azure.ai.formrecognizer._models.Point]

Bounding polygon of the selection mark.

span: azure.ai.formrecognizer._models.DocumentSpan

Location of the selection mark in the reading order concatenated content.

state: str

“selected”, “unselected”.

Type

State of the selection mark. Possible values include

class azure.ai.formrecognizer.DocumentSpan(**kwargs: Any)[source]

Contiguous region of the content of the property, specified as an offset and length.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentSpan[source]

Converts a dict in the shape of a DocumentSpan to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentSpan.

Returns

DocumentSpan

Return type

DocumentSpan

to_dict()Dict[source]

Returns a dict representation of DocumentSpan.

Returns

dict

Return type

dict

length: int

Number of characters in the content represented by the span.

offset: int

Zero-based index of the content represented by the span.

class azure.ai.formrecognizer.DocumentStyle(**kwargs: Any)[source]

An object representing observed text styles.

New in version 2023-07-31: The similar_font_family, font_style, font_weight, color, and background_color properties.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentStyle[source]

Converts a dict in the shape of a DocumentStyle to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentStyle.

Returns

DocumentStyle

Return type

DocumentStyle

to_dict()Dict[source]

Returns a dict representation of DocumentStyle.

Returns

dict

Return type

dict

background_color: Optional[str]

Background color in #rrggbb hexadecimal format.

color: Optional[str]

Foreground color in #rrggbb hexadecimal format.

confidence: float

Confidence of correctly identifying the style.

font_style: Optional[str]

“normal”, “italic”.

Type

Font style. Known values are

font_weight: Optional[str]

“normal”, “bold”.

Type

Font weight. Known values are

is_handwritten: Optional[bool]

Indicates if the content is handwritten.

similar_font_family: Optional[str]

Visually most similar font from among the set of supported font families, with fallback fonts following CSS convention (ex. ‘Arial, sans-serif’).

spans: List[azure.ai.formrecognizer._models.DocumentSpan]

Location of the text elements in the concatenated content the style applies to.

class azure.ai.formrecognizer.DocumentTable(**kwargs: Any)[source]

A table object consisting of table cells arranged in a rectangular layout.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentTable[source]

Converts a dict in the shape of a DocumentTable to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentTable.

Returns

DocumentTable

Return type

DocumentTable

to_dict()Dict[source]

Returns a dict representation of DocumentTable.

Returns

dict

Return type

dict

bounding_regions: Optional[List[azure.ai.formrecognizer._models.BoundingRegion]]

Bounding regions covering the table.

cells: List[azure.ai.formrecognizer._models.DocumentTableCell]

Cells contained within the table.

column_count: int

Number of columns in the table.

row_count: int

Number of rows in the table.

spans: List[azure.ai.formrecognizer._models.DocumentSpan]

Location of the table in the reading order concatenated content.

class azure.ai.formrecognizer.DocumentTableCell(**kwargs: Any)[source]

An object representing the location and content of a table cell.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentTableCell[source]

Converts a dict in the shape of a DocumentTableCell to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentTableCell.

Returns

DocumentTableCell

Return type

DocumentTableCell

to_dict()Dict[source]

Returns a dict representation of DocumentTableCell.

Returns

dict

Return type

dict

bounding_regions: Optional[List[azure.ai.formrecognizer._models.BoundingRegion]]

Bounding regions covering the table cell.

column_index: int

Column index of the cell.

column_span: Optional[int]

Number of columns spanned by this cell.

content: str

Concatenated content of the table cell in reading order.

kind: Optional[str]

“content”, “rowHeader”, “columnHeader”, “stubHead”, “description”. Default value: “content”.

Type

Table cell kind. Possible values include

row_index: int

Row index of the cell.

row_span: Optional[int]

Number of rows spanned by this cell.

spans: List[azure.ai.formrecognizer._models.DocumentSpan]

Location of the table cell in the reading order concatenated content.

class azure.ai.formrecognizer.DocumentTypeDetails(**kwargs: Any)[source]

DocumentTypeDetails represents a document type that a model can recognize, including its fields and types, and the confidence for those fields.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentTypeDetails[source]

Converts a dict in the shape of a DocumentTypeDetails to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentTypeDetails.

Returns

DocumentTypeDetails

Return type

DocumentTypeDetails

to_dict()Dict[source]

Returns a dict representation of DocumentTypeDetails.

Returns

dict

Return type

dict

build_mode: Optional[str]

The build mode used when building the custom model. Possible values include: “template”, “neural”.

description: Optional[str]

A description for the model.

field_confidence: Optional[Dict[str, float]]

Estimated confidence for each field.

field_schema: Dict[str, Any]

Description of the document semantic schema.

class azure.ai.formrecognizer.DocumentWord(**kwargs: Any)[source]

A word object consisting of a contiguous sequence of characters. For non-space delimited languages, such as Chinese, Japanese, and Korean, each character is represented as its own word.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.DocumentWord[source]

Converts a dict in the shape of a DocumentWord to the model itself.

Parameters

data (dict) – A dictionary in the shape of DocumentWord.

Returns

DocumentWord

Return type

DocumentWord

to_dict()Dict[source]

Returns a dict representation of DocumentWord.

Returns

dict

Return type

dict

confidence: float

Confidence of correctly extracting the word.

content: str

Text content of the word.

polygon: Sequence[azure.ai.formrecognizer._models.Point]

Bounding polygon of the word.

span: azure.ai.formrecognizer._models.DocumentSpan

Location of the word in the reading order concatenated content.

class azure.ai.formrecognizer.FieldData(**kwargs: Any)[source]

Contains the data for the form field. This includes the text, location of the text on the form, and a collection of the elements that make up the text.

New in version v2.1: FormSelectionMark is added to the types returned in the list of field_elements, support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.FieldData[source]

Converts a dict in the shape of a FieldData to the model itself.

Parameters

data (dict) – A dictionary in the shape of FieldData.

Returns

FieldData

Return type

FieldData

to_dict()Dict[source]

Returns a dict representation of FieldData.

Returns

dict

Return type

dict

bounding_box: List[azure.ai.formrecognizer._models.Point]

A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.

field_elements: List[Union[azure.ai.formrecognizer._models.FormElement, azure.ai.formrecognizer._models.FormWord, azure.ai.formrecognizer._models.FormLine, azure.ai.formrecognizer._models.FormSelectionMark]]

When include_field_elements is set to true, a list of elements constituting this field or value is returned. The list constitutes of elements such as lines, words, and selection marks.

page_number: int

The 1-based number of the page in which this content is present.

text: str

The string representation of the field or value.

class azure.ai.formrecognizer.FieldValueType(value)[source]

Semantic data type of the field value.

New in version v2.1: The selectionMark and countryRegion values

COUNTRY_REGION = 'countryRegion'
DATE = 'date'
DICTIONARY = 'dictionary'
FLOAT = 'float'
INTEGER = 'integer'
LIST = 'list'
PHONE_NUMBER = 'phoneNumber'
SELECTION_MARK = 'selectionMark'
STRING = 'string'
TIME = 'time'
class azure.ai.formrecognizer.FormContentType(value)[source]

Content type for upload.

New in version v2.1: Support for image/bmp

APPLICATION_PDF = 'application/pdf'
IMAGE_BMP = 'image/bmp'
IMAGE_JPEG = 'image/jpeg'
IMAGE_PNG = 'image/png'
IMAGE_TIFF = 'image/tiff'
class azure.ai.formrecognizer.FormElement(**kwargs: Any)[source]

Base type which includes properties for a form element.

New in version v2.1: Support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.FormElement[source]

Converts a dict in the shape of a FormElement to the model itself.

Parameters

data (dict) – A dictionary in the shape of FormElement.

Returns

FormElement

Return type

FormElement

to_dict()Dict[source]

Returns a dict representation of FormElement.

Returns

dict

Return type

dict

bounding_box: List[azure.ai.formrecognizer._models.Point]

A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.

kind: str

The kind of form element. Possible kinds are “word”, “line”, or “selectionMark” which correspond to a FormWord FormLine, or FormSelectionMark, respectively.

page_number: int

The 1-based number of the page in which this content is present.

text: str

The text content of the element.

class azure.ai.formrecognizer.FormField(**kwargs: Any)[source]

Represents a field recognized in an input form.

New in version v2.1: Support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.FormField[source]

Converts a dict in the shape of a FormField to the model itself.

Parameters

data (dict) – A dictionary in the shape of FormField.

Returns

FormField

Return type

FormField

to_dict()Dict[source]

Returns a dict representation of FormField.

Returns

dict

Return type

dict

confidence: float

Measures the degree of certainty of the recognition result. Value is between [0.0, 1.0].

label_data: azure.ai.formrecognizer._models.FieldData

Contains the text, bounding box, and field elements for the field label. Note that this is not returned for forms analyzed by models trained with labels.

name: str

The unique name of the field or the training-time label if analyzed from a custom model that was trained with labels.

value: Union[str, int, float, datetime.date, datetime.time, Dict[str, azure.ai.formrecognizer._models.FormField], List[azure.ai.formrecognizer._models.FormField]]

The value for the recognized field. Its semantic data type is described by value_type. If the value is extracted from the form, but cannot be normalized to its type, then access the value_data.text property for a textual representation of the value.

value_data: azure.ai.formrecognizer._models.FieldData

Contains the text, bounding box, and field elements for the field value.

value_type: str

The type of value found on FormField. Described in FieldValueType, possible types include: ‘string’, ‘date’, ‘time’, ‘phoneNumber’, ‘float’, ‘integer’, ‘dictionary’, ‘list’, ‘selectionMark’, or ‘countryRegion’.

class azure.ai.formrecognizer.FormLine(**kwargs: Any)[source]

An object representing an extracted line of text.

New in version v2.1: appearance property, support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.FormLine[source]

Converts a dict in the shape of a FormLine to the model itself.

Parameters

data (dict) – A dictionary in the shape of FormLine.

Returns

FormLine

Return type

FormLine

to_dict()Dict[source]

Returns a dict representation of FormLine.

Returns

dict

Return type

dict

appearance: azure.ai.formrecognizer._models.TextAppearance

An object representing the appearance of the line.

bounding_box: List[azure.ai.formrecognizer._models.Point]

A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.

kind: str

For FormLine, this is “line”.

page_number: int

The 1-based number of the page in which this content is present.

text: str

The text content of the line.

words: List[azure.ai.formrecognizer._models.FormWord]

A list of the words that make up the line.

class azure.ai.formrecognizer.FormPage(**kwargs: Any)[source]

Represents a page recognized from the input document. Contains lines, words, selection marks, tables and page metadata.

New in version v2.1: selection_marks property, support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.FormPage[source]

Converts a dict in the shape of a FormPage to the model itself.

Parameters

data (dict) – A dictionary in the shape of FormPage.

Returns

FormPage

Return type

FormPage

to_dict()Dict[source]

Returns a dict representation of FormPage.

Returns

dict

Return type

dict

height: float

The height of the image/PDF in pixels/inches, respectively.

lines: List[azure.ai.formrecognizer._models.FormLine]

When include_field_elements is set to true, a list of recognized text lines is returned. For calls to recognize content, this list is always populated. The maximum number of lines returned is 300 per page. The lines are sorted top to bottom, left to right, although in certain cases proximity is treated with higher priority. As the sorting order depends on the detected text, it may change across images and OCR version updates. Thus, business logic should be built upon the actual line location instead of order. The reading order of lines can be specified by the reading_order keyword argument (Note: reading_order only supported in begin_recognize_content and begin_recognize_content_from_url).

page_number: int

The 1-based number of the page in which this content is present.

selection_marks: List[azure.ai.formrecognizer._models.FormSelectionMark]

List of selection marks extracted from the page.

tables: List[azure.ai.formrecognizer._models.FormTable]

A list of extracted tables contained in a page.

text_angle: float

The general orientation of the text in clockwise direction, measured in degrees between (-180, 180].

unit: str

The LengthUnit used by the width, height, and bounding box properties. For images, the unit is “pixel”. For PDF, the unit is “inch”.

width: float

The width of the image/PDF in pixels/inches, respectively.

class azure.ai.formrecognizer.FormPageRange(first_page_number: int, last_page_number: int)[source]

The 1-based page range of the form.

New in version v2.1: Support for to_dict and from_dict methods

Create new instance of FormPageRange(first_page_number, last_page_number)

count(value, /)

Return number of occurrences of value.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.FormPageRange[source]

Converts a dict in the shape of a FormPageRange to the model itself.

Parameters

data (dict) – A dictionary in the shape of FormPageRange.

Returns

FormPageRange

Return type

FormPageRange

index(value, start=0, stop=9223372036854775807, /)

Return first index of value.

Raises ValueError if the value is not present.

to_dict()Dict[source]

Returns a dict representation of FormPageRange.

Returns

dict

Return type

dict

first_page_number: int

The first page number of the form.

last_page_number: int

The last page number of the form.

class azure.ai.formrecognizer.FormRecognizerApiVersion(value)[source]

Form Recognizer API versions supported by FormRecognizerClient and FormTrainingClient.

V2_0 = '2.0'
V2_1 = '2.1'

This is the default version

class azure.ai.formrecognizer.FormRecognizerClient(endpoint: str, credential: Union[azure.core.credentials.AzureKeyCredential, azure.core.credentials.TokenCredential], **kwargs: Any)[source]

FormRecognizerClient extracts information from forms and images into structured data. It is the interface to use for analyzing with prebuilt models (receipts, business cards, invoices, identity documents), recognizing content/layout from forms, and analyzing custom forms from trained models. It provides different methods based on inputs from a URL and inputs from a stream.

Note

FormRecognizerClient should be used with API versions <=v2.1. To use API versions 2022-08-31 and up, instantiate a DocumentAnalysisClient.

Parameters
Keyword Arguments

api_version (str or FormRecognizerApiVersion) – The API version of the service to use for requests. It defaults to API version v2.1. Setting to an older version may result in reduced feature compatibility. To use the latest supported API version and features, instantiate a DocumentAnalysisClient instead.

Example:

Creating the FormRecognizerClient with an endpoint and API key.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import FormRecognizerClient
endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
Creating the FormRecognizerClient with a token credential.
"""DefaultAzureCredential will use the values from these environment
variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET
"""
from azure.ai.formrecognizer import FormRecognizerClient
from azure.identity import DefaultAzureCredential

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
credential = DefaultAzureCredential()

form_recognizer_client = FormRecognizerClient(endpoint, credential)
begin_recognize_business_cards(business_card: Union[bytes, IO[bytes]], **kwargs: Any)azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]

Extract field text and semantic values from a given business card. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.

See fields found on a business card here: https://aka.ms/formrecognizer/businesscardfields

Parameters

business_card (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.

Keyword Arguments
  • locale (str) – Locale of the business card. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.

  • include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.

  • pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.

  • content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see FormContentType.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

Returns

An instance of an LROPoller. Call result() on the poller object to return a list[RecognizedForm].

Return type

LROPoller[list[RecognizedForm]]

Raises

HttpResponseError

New in version v2.1: The begin_recognize_business_cards client method

Example:

Recognize business cards from a file.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import FormRecognizerClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

form_recognizer_client = FormRecognizerClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)
with open(path_to_sample_forms, "rb") as f:
    poller = form_recognizer_client.begin_recognize_business_cards(business_card=f, locale="en-US")
business_cards = poller.result()

for idx, business_card in enumerate(business_cards):
    print("--------Recognizing business card #{}--------".format(idx+1))
    contact_names = business_card.fields.get("ContactNames")
    if contact_names:
        for contact_name in contact_names.value:
            print("Contact First Name: {} has confidence: {}".format(
                contact_name.value["FirstName"].value, contact_name.value["FirstName"].confidence
            ))
            print("Contact Last Name: {} has confidence: {}".format(
                contact_name.value["LastName"].value, contact_name.value["LastName"].confidence
            ))
    company_names = business_card.fields.get("CompanyNames")
    if company_names:
        for company_name in company_names.value:
            print("Company Name: {} has confidence: {}".format(company_name.value, company_name.confidence))
    departments = business_card.fields.get("Departments")
    if departments:
        for department in departments.value:
            print("Department: {} has confidence: {}".format(department.value, department.confidence))
    job_titles = business_card.fields.get("JobTitles")
    if job_titles:
        for job_title in job_titles.value:
            print("Job Title: {} has confidence: {}".format(job_title.value, job_title.confidence))
    emails = business_card.fields.get("Emails")
    if emails:
        for email in emails.value:
            print("Email: {} has confidence: {}".format(email.value, email.confidence))
    websites = business_card.fields.get("Websites")
    if websites:
        for website in websites.value:
            print("Website: {} has confidence: {}".format(website.value, website.confidence))
    addresses = business_card.fields.get("Addresses")
    if addresses:
        for address in addresses.value:
            print("Address: {} has confidence: {}".format(address.value, address.confidence))
    mobile_phones = business_card.fields.get("MobilePhones")
    if mobile_phones:
        for phone in mobile_phones.value:
            print("Mobile phone number: {} has confidence: {}".format(phone.value, phone.confidence))
    faxes = business_card.fields.get("Faxes")
    if faxes:
        for fax in faxes.value:
            print("Fax number: {} has confidence: {}".format(fax.value, fax.confidence))
    work_phones = business_card.fields.get("WorkPhones")
    if work_phones:
        for work_phone in work_phones.value:
            print("Work phone number: {} has confidence: {}".format(work_phone.value, work_phone.confidence))
    other_phones = business_card.fields.get("OtherPhones")
    if other_phones:
        for other_phone in other_phones.value:
            print("Other phone number: {} has confidence: {}".format(other_phone.value, other_phone.confidence))
begin_recognize_business_cards_from_url(business_card_url: str, **kwargs: Any)azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]

Extract field text and semantic values from a given business card. The input document must be the location (URL) of the card to be analyzed.

See fields found on a business card here: https://aka.ms/formrecognizer/businesscardfields

Parameters

business_card_url (str) – The URL of the business card to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.

Keyword Arguments
  • locale (str) – Locale of the business card. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.

  • include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.

  • pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

Returns

An instance of an LROPoller. Call result() on the poller object to return a list[RecognizedForm].

Return type

LROPoller[list[RecognizedForm]]

Raises

HttpResponseError

New in version v2.1: The begin_recognize_business_cards_from_url client method

begin_recognize_content(form: Union[bytes, IO[bytes]], **kwargs: Any)azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.FormPage]][source]

Extract text and content/layout information from a given document. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.

Parameters

form (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.

Keyword Arguments
  • pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.

  • language (str) – The BCP-47 language code of the text in the document. See supported language codes here: https://docs.microsoft.com/azure/cognitive-services/form-recognizer/language-support. Content supports auto language identification and multilanguage documents, so only provide a language code if you would like to force the documented to be processed as that specific language.

  • reading_order (str) – Reading order algorithm to sort the text lines returned. Supported reading orders include: basic (default), natural. Set ‘basic’ to sort lines left to right and top to bottom, although in some cases proximity is treated with higher priority. Set ‘natural’ to sort lines by using positional information to keep nearby lines together.

  • content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see FormContentType.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

Returns

An instance of an LROPoller. Call result() on the poller object to return a list[FormPage].

Return type

LROPoller[list[FormPage]]

Raises

HttpResponseError

New in version v2.1: The pages, language and reading_order keyword arguments and support for image/bmp content

Example:

Recognize text and content/layout information from a form.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import FormRecognizerClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

form_recognizer_client = FormRecognizerClient(endpoint=endpoint, credential=AzureKeyCredential(key))
with open(path_to_sample_forms, "rb") as f:
    poller = form_recognizer_client.begin_recognize_content(form=f)
form_pages = poller.result()

for idx, content in enumerate(form_pages):
    print("----Recognizing content from page #{}----".format(idx+1))
    print("Page has width: {} and height: {}, measured with unit: {}".format(
        content.width,
        content.height,
        content.unit
    ))
    for table_idx, table in enumerate(content.tables):
        print("Table # {} has {} rows and {} columns".format(table_idx, table.row_count, table.column_count))
        print("Table # {} location on page: {}".format(table_idx, format_bounding_box(table.bounding_box)))
        for cell in table.cells:
            print("...Cell[{}][{}] has text '{}' within bounding box '{}'".format(
                cell.row_index,
                cell.column_index,
                cell.text,
                format_bounding_box(cell.bounding_box)
            ))

    for line_idx, line in enumerate(content.lines):
        print("Line # {} has word count '{}' and text '{}' within bounding box '{}'".format(
            line_idx,
            len(line.words),
            line.text,
            format_bounding_box(line.bounding_box)
        ))
        if line.appearance:
            if line.appearance.style_name == "handwriting" and line.appearance.style_confidence > 0.8:
                print("Text line '{}' is handwritten and might be a signature.".format(line.text))
        for word in line.words:
            print("...Word '{}' has a confidence of {}".format(word.text, word.confidence))

    for selection_mark in content.selection_marks:
        print("Selection mark is '{}' within bounding box '{}' and has a confidence of {}".format(
            selection_mark.state,
            format_bounding_box(selection_mark.bounding_box),
            selection_mark.confidence
        ))
    print("----------------------------------------")

begin_recognize_content_from_url(form_url: str, **kwargs: Any)azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.FormPage]][source]

Extract text and layout information from a given document. The input document must be the location (URL) of the document to be analyzed.

Parameters

form_url (str) – The URL of the form to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.

Keyword Arguments
  • pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.

  • language (str) – The BCP-47 language code of the text in the document. See supported language codes here: https://docs.microsoft.com/azure/cognitive-services/form-recognizer/language-support. Content supports auto language identification and multilanguage documents, so only provide a language code if you would like to force the documented to be processed as that specific language.

  • reading_order (str) – Reading order algorithm to sort the text lines returned. Supported reading orders include: basic (default), natural. Set ‘basic’ to sort lines left to right and top to bottom, although in some cases proximity is treated with higher priority. Set ‘natural’ to sort lines by using positional information to keep nearby lines together.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

Returns

An instance of an LROPoller. Call result() on the poller object to return a list[FormPage].

Return type

LROPoller[list[FormPage]]

Raises

HttpResponseError

New in version v2.1: The pages, language and reading_order keyword arguments and support for image/bmp content

begin_recognize_custom_forms(model_id: str, form: Union[bytes, IO[bytes]], **kwargs: Any)azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]

Analyze a custom form with a model trained with or without labels. The form to analyze should be of the same type as the forms that were used to train the model. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’, or ‘image/bmp’.

Parameters
  • model_id (str) – Custom model identifier.

  • form (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.

Keyword Arguments
  • include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.

  • content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see FormContentType.

  • pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

Returns

An instance of an LROPoller. Call result() on the poller object to return a list[RecognizedForm].

Return type

LROPoller[list[RecognizedForm]]

Raises

HttpResponseError

Example:

Recognize fields and values from a custom form.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import FormRecognizerClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]
model_id = os.getenv("CUSTOM_TRAINED_MODEL_ID", custom_model_id)

form_recognizer_client = FormRecognizerClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)

# Make sure your form's type is included in the list of form types the custom model can recognize
with open(path_to_sample_forms, "rb") as f:
    poller = form_recognizer_client.begin_recognize_custom_forms(
        model_id=model_id, form=f, include_field_elements=True
    )
forms = poller.result()

for idx, form in enumerate(forms):
    print("--------Recognizing Form #{}--------".format(idx+1))
    print("Form has type {}".format(form.form_type))
    print("Form has form type confidence {}".format(form.form_type_confidence))
    print("Form was analyzed with model with ID {}".format(form.model_id))
    for name, field in form.fields.items():
        # each field is of type FormField
        # label_data is populated if you are using a model trained without labels,
        # since the service needs to make predictions for labels if not explicitly given to it.
        if field.label_data:
            print("...Field '{}' has label '{}' with a confidence score of {}".format(
                name,
                field.label_data.text,
                field.confidence
            ))

        print("...Label '{}' has value '{}' with a confidence score of {}".format(
            field.label_data.text if field.label_data else name, field.value, field.confidence
        ))

    # iterate over tables, lines, and selection marks on each page
    for page in form.pages:
        for i, table in enumerate(page.tables):
            print("\nTable {} on page {}".format(i+1, table.page_number))
            for cell in table.cells:
                print("...Cell[{}][{}] has text '{}' with confidence {}".format(
                    cell.row_index, cell.column_index, cell.text, cell.confidence
                ))
        print("\nLines found on page {}".format(page.page_number))
        for line in page.lines:
            print("...Line '{}' is made up of the following words: ".format(line.text))
            for word in line.words:
                print("......Word '{}' has a confidence of {}".format(
                    word.text,
                    word.confidence
                ))
        if page.selection_marks:
            print("\nSelection marks found on page {}".format(page.page_number))
            for selection_mark in page.selection_marks:
                print("......Selection mark is '{}' and has a confidence of {}".format(
                    selection_mark.state,
                    selection_mark.confidence
                ))

    print("-----------------------------------")
begin_recognize_custom_forms_from_url(model_id: str, form_url: str, **kwargs: Any)azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]

Analyze a custom form with a model trained with or without labels. The form to analyze should be of the same type as the forms that were used to train the model. The input document must be the location (URL) of the document to be analyzed.

Parameters
  • model_id (str) – Custom model identifier.

  • form_url (str) – The URL of the form to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.

Keyword Arguments
  • include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.

  • pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

Returns

An instance of an LROPoller. Call result() on the poller object to return a list[RecognizedForm].

Return type

LROPoller[list[RecognizedForm]]

Raises

HttpResponseError

begin_recognize_identity_documents(identity_document: Union[bytes, IO[bytes]], **kwargs: Any)azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]

Extract field text and semantic values from a given identity document. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.

See fields found on an identity document here: https://aka.ms/formrecognizer/iddocumentfields

Parameters

identity_document (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.

Keyword Arguments
  • include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.

  • content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see FormContentType.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

  • pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.

Returns

An instance of an LROPoller. Call result() on the poller object to return a list[RecognizedForm].

Return type

LROPoller[list[RecognizedForm]]

Raises

HttpResponseError

New in version v2.1: The begin_recognize_identity_documents client method

Example:

Recognize identity document fields.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import FormRecognizerClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

form_recognizer_client = FormRecognizerClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)
with open(path_to_sample_forms, "rb") as f:
    poller = form_recognizer_client.begin_recognize_identity_documents(identity_document=f)
id_documents = poller.result()

for idx, id_document in enumerate(id_documents):
    print("--------Recognizing ID document #{}--------".format(idx+1))
    first_name = id_document.fields.get("FirstName")
    if first_name:
        print("First Name: {} has confidence: {}".format(first_name.value, first_name.confidence))
    last_name = id_document.fields.get("LastName")
    if last_name:
        print("Last Name: {} has confidence: {}".format(last_name.value, last_name.confidence))
    document_number = id_document.fields.get("DocumentNumber")
    if document_number:
        print("Document Number: {} has confidence: {}".format(document_number.value, document_number.confidence))
    dob = id_document.fields.get("DateOfBirth")
    if dob:
        print("Date of Birth: {} has confidence: {}".format(dob.value, dob.confidence))
    doe = id_document.fields.get("DateOfExpiration")
    if doe:
        print("Date of Expiration: {} has confidence: {}".format(doe.value, doe.confidence))
    sex = id_document.fields.get("Sex")
    if sex:
        print("Sex: {} has confidence: {}".format(sex.value, sex.confidence))
    address = id_document.fields.get("Address")
    if address:
        print("Address: {} has confidence: {}".format(address.value, address.confidence))
    country_region = id_document.fields.get("CountryRegion")
    if country_region:
        print("Country/Region: {} has confidence: {}".format(country_region.value, country_region.confidence))
    region = id_document.fields.get("Region")
    if region:
        print("Region: {} has confidence: {}".format(region.value, region.confidence))
begin_recognize_identity_documents_from_url(identity_document_url: str, **kwargs: Any)azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]

Extract field text and semantic values from a given identity document. The input document must be the location (URL) of the identity document to be analyzed.

See fields found on an identity document here: https://aka.ms/formrecognizer/iddocumentfields

Parameters

identity_document_url (str) – The URL of the identity document to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.

Keyword Arguments
  • include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

  • pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.

Returns

An instance of an LROPoller. Call result() on the poller object to return a list[RecognizedForm].

Return type

LROPoller[list[RecognizedForm]]

Raises

HttpResponseError

New in version v2.1: The begin_recognize_identity_documents_from_url client method

begin_recognize_invoices(invoice: Union[bytes, IO[bytes]], **kwargs: Any)azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]

Extract field text and semantic values from a given invoice. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.

See fields found on a invoice here: https://aka.ms/formrecognizer/invoicefields

Parameters

invoice (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.

Keyword Arguments
  • locale (str) – Locale of the invoice. Supported locales include: en-US

  • include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.

  • pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.

  • content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see FormContentType.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

Returns

An instance of an LROPoller. Call result() on the poller object to return a list[RecognizedForm].

Return type

LROPoller[list[RecognizedForm]]

Raises

HttpResponseError

New in version v2.1: The begin_recognize_invoices client method

Example:

Recognize invoices from a file.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import FormRecognizerClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

form_recognizer_client = FormRecognizerClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)
with open(path_to_sample_forms, "rb") as f:
    poller = form_recognizer_client.begin_recognize_invoices(invoice=f, locale="en-US")
invoices = poller.result()

for idx, invoice in enumerate(invoices):
    print("--------Recognizing invoice #{}--------".format(idx+1))
    vendor_name = invoice.fields.get("VendorName")
    if vendor_name:
        print("Vendor Name: {} has confidence: {}".format(vendor_name.value, vendor_name.confidence))
    vendor_address = invoice.fields.get("VendorAddress")
    if vendor_address:
        print("Vendor Address: {} has confidence: {}".format(vendor_address.value, vendor_address.confidence))
    vendor_address_recipient = invoice.fields.get("VendorAddressRecipient")
    if vendor_address_recipient:
        print("Vendor Address Recipient: {} has confidence: {}".format(vendor_address_recipient.value, vendor_address_recipient.confidence))
    customer_name = invoice.fields.get("CustomerName")
    if customer_name:
        print("Customer Name: {} has confidence: {}".format(customer_name.value, customer_name.confidence))
    customer_id = invoice.fields.get("CustomerId")
    if customer_id:
        print("Customer Id: {} has confidence: {}".format(customer_id.value, customer_id.confidence))
    customer_address = invoice.fields.get("CustomerAddress")
    if customer_address:
        print("Customer Address: {} has confidence: {}".format(customer_address.value, customer_address.confidence))
    customer_address_recipient = invoice.fields.get("CustomerAddressRecipient")
    if customer_address_recipient:
        print("Customer Address Recipient: {} has confidence: {}".format(customer_address_recipient.value, customer_address_recipient.confidence))
    invoice_id = invoice.fields.get("InvoiceId")
    if invoice_id:
        print("Invoice Id: {} has confidence: {}".format(invoice_id.value, invoice_id.confidence))
    invoice_date = invoice.fields.get("InvoiceDate")
    if invoice_date:
        print("Invoice Date: {} has confidence: {}".format(invoice_date.value, invoice_date.confidence))
    invoice_total = invoice.fields.get("InvoiceTotal")
    if invoice_total:
        print("Invoice Total: {} has confidence: {}".format(invoice_total.value, invoice_total.confidence))
    due_date = invoice.fields.get("DueDate")
    if due_date:
        print("Due Date: {} has confidence: {}".format(due_date.value, due_date.confidence))
    purchase_order = invoice.fields.get("PurchaseOrder")
    if purchase_order:
        print("Purchase Order: {} has confidence: {}".format(purchase_order.value, purchase_order.confidence))
    billing_address = invoice.fields.get("BillingAddress")
    if billing_address:
        print("Billing Address: {} has confidence: {}".format(billing_address.value, billing_address.confidence))
    billing_address_recipient = invoice.fields.get("BillingAddressRecipient")
    if billing_address_recipient:
        print("Billing Address Recipient: {} has confidence: {}".format(billing_address_recipient.value, billing_address_recipient.confidence))
    shipping_address = invoice.fields.get("ShippingAddress")
    if shipping_address:
        print("Shipping Address: {} has confidence: {}".format(shipping_address.value, shipping_address.confidence))
    shipping_address_recipient = invoice.fields.get("ShippingAddressRecipient")
    if shipping_address_recipient:
        print("Shipping Address Recipient: {} has confidence: {}".format(shipping_address_recipient.value, shipping_address_recipient.confidence))
    print("Invoice items:")
    for idx, item in enumerate(invoice.fields.get("Items").value):
        print("...Item #{}".format(idx+1))
        item_description = item.value.get("Description")
        if item_description:
            print("......Description: {} has confidence: {}".format(item_description.value, item_description.confidence))
        item_quantity = item.value.get("Quantity")
        if item_quantity:
            print("......Quantity: {} has confidence: {}".format(item_quantity.value, item_quantity.confidence))
        unit = item.value.get("Unit")
        if unit:
            print("......Unit: {} has confidence: {}".format(unit.value, unit.confidence))
        unit_price = item.value.get("UnitPrice")
        if unit_price:
            print("......Unit Price: {} has confidence: {}".format(unit_price.value, unit_price.confidence))
        product_code = item.value.get("ProductCode")
        if product_code:
            print("......Product Code: {} has confidence: {}".format(product_code.value, product_code.confidence))
        item_date = item.value.get("Date")
        if item_date:
            print("......Date: {} has confidence: {}".format(item_date.value, item_date.confidence))
        tax = item.value.get("Tax")
        if tax:
            print("......Tax: {} has confidence: {}".format(tax.value, tax.confidence))
        amount = item.value.get("Amount")
        if amount:
            print("......Amount: {} has confidence: {}".format(amount.value, amount.confidence))
    subtotal = invoice.fields.get("SubTotal")
    if subtotal:
        print("Subtotal: {} has confidence: {}".format(subtotal.value, subtotal.confidence))
    total_tax = invoice.fields.get("TotalTax")
    if total_tax:
        print("Total Tax: {} has confidence: {}".format(total_tax.value, total_tax.confidence))
    previous_unpaid_balance = invoice.fields.get("PreviousUnpaidBalance")
    if previous_unpaid_balance:
        print("Previous Unpaid Balance: {} has confidence: {}".format(previous_unpaid_balance.value, previous_unpaid_balance.confidence))
    amount_due = invoice.fields.get("AmountDue")
    if amount_due:
        print("Amount Due: {} has confidence: {}".format(amount_due.value, amount_due.confidence))
    service_start_date = invoice.fields.get("ServiceStartDate")
    if service_start_date:
        print("Service Start Date: {} has confidence: {}".format(service_start_date.value, service_start_date.confidence))
    service_end_date = invoice.fields.get("ServiceEndDate")
    if service_end_date:
        print("Service End Date: {} has confidence: {}".format(service_end_date.value, service_end_date.confidence))
    service_address = invoice.fields.get("ServiceAddress")
    if service_address:
        print("Service Address: {} has confidence: {}".format(service_address.value, service_address.confidence))
    service_address_recipient = invoice.fields.get("ServiceAddressRecipient")
    if service_address_recipient:
        print("Service Address Recipient: {} has confidence: {}".format(service_address_recipient.value, service_address_recipient.confidence))
    remittance_address = invoice.fields.get("RemittanceAddress")
    if remittance_address:
        print("Remittance Address: {} has confidence: {}".format(remittance_address.value, remittance_address.confidence))
    remittance_address_recipient = invoice.fields.get("RemittanceAddressRecipient")
    if remittance_address_recipient:
        print("Remittance Address Recipient: {} has confidence: {}".format(remittance_address_recipient.value, remittance_address_recipient.confidence))
begin_recognize_invoices_from_url(invoice_url: str, **kwargs: Any)azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]

Extract field text and semantic values from a given invoice. The input document must be the location (URL) of the invoice to be analyzed.

See fields found on a invoice card here: https://aka.ms/formrecognizer/invoicefields

Parameters

invoice_url (str) – The URL of the invoice to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.

Keyword Arguments
  • locale (str) – Locale of the invoice. Supported locales include: en-US

  • include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.

  • pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

Returns

An instance of an LROPoller. Call result() on the poller object to return a list[RecognizedForm].

Return type

LROPoller[list[RecognizedForm]]

Raises

HttpResponseError

New in version v2.1: The begin_recognize_invoices_from_url client method

begin_recognize_receipts(receipt: Union[bytes, IO[bytes]], **kwargs: Any)azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]

Extract field text and semantic values from a given sales receipt. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.

See fields found on a receipt here: https://aka.ms/formrecognizer/receiptfields

Parameters

receipt (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.

Keyword Arguments
  • include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.

  • content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see FormContentType.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

  • locale (str) – Locale of the receipt. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.

  • pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.

Returns

An instance of an LROPoller. Call result() on the poller object to return a list[RecognizedForm].

Return type

LROPoller[list[RecognizedForm]]

Raises

HttpResponseError

New in version v2.1: The locale and pages keyword arguments and support for image/bmp content

Example:

Recognize sales receipt fields.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import FormRecognizerClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

form_recognizer_client = FormRecognizerClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)
with open(path_to_sample_forms, "rb") as f:
    poller = form_recognizer_client.begin_recognize_receipts(receipt=f, locale="en-US")
receipts = poller.result()

for idx, receipt in enumerate(receipts):
    print("--------Recognizing receipt #{}--------".format(idx+1))
    receipt_type = receipt.fields.get("ReceiptType")
    if receipt_type:
        print("Receipt Type: {} has confidence: {}".format(receipt_type.value, receipt_type.confidence))
    merchant_name = receipt.fields.get("MerchantName")
    if merchant_name:
        print("Merchant Name: {} has confidence: {}".format(merchant_name.value, merchant_name.confidence))
    transaction_date = receipt.fields.get("TransactionDate")
    if transaction_date:
        print("Transaction Date: {} has confidence: {}".format(transaction_date.value, transaction_date.confidence))
    if receipt.fields.get("Items"):
        print("Receipt items:")
        for idx, item in enumerate(receipt.fields.get("Items").value):
            print("...Item #{}".format(idx+1))
            item_name = item.value.get("Name")
            if item_name:
                print("......Item Name: {} has confidence: {}".format(item_name.value, item_name.confidence))
            item_quantity = item.value.get("Quantity")
            if item_quantity:
                print("......Item Quantity: {} has confidence: {}".format(item_quantity.value, item_quantity.confidence))
            item_price = item.value.get("Price")
            if item_price:
                print("......Individual Item Price: {} has confidence: {}".format(item_price.value, item_price.confidence))
            item_total_price = item.value.get("TotalPrice")
            if item_total_price:
                print("......Total Item Price: {} has confidence: {}".format(item_total_price.value, item_total_price.confidence))
    subtotal = receipt.fields.get("Subtotal")
    if subtotal:
        print("Subtotal: {} has confidence: {}".format(subtotal.value, subtotal.confidence))
    tax = receipt.fields.get("Tax")
    if tax:
        print("Tax: {} has confidence: {}".format(tax.value, tax.confidence))
    tip = receipt.fields.get("Tip")
    if tip:
        print("Tip: {} has confidence: {}".format(tip.value, tip.confidence))
    total = receipt.fields.get("Total")
    if total:
        print("Total: {} has confidence: {}".format(total.value, total.confidence))
    print("--------------------------------------")
begin_recognize_receipts_from_url(receipt_url: str, **kwargs: Any)azure.core.polling._poller.LROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]

Extract field text and semantic values from a given sales receipt. The input document must be the location (URL) of the receipt to be analyzed.

See fields found on a receipt here: https://aka.ms/formrecognizer/receiptfields

Parameters

receipt_url (str) – The URL of the receipt to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.

Keyword Arguments
  • include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

  • locale (str) – Locale of the receipt. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.

  • pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.

Returns

An instance of an LROPoller. Call result() on the poller object to return a list[RecognizedForm].

Return type

LROPoller[list[RecognizedForm]]

Raises

HttpResponseError

New in version v2.1: The locale and pages keyword arguments and support for image/bmp content

Example:

Recognize sales receipt fields from a URL.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import FormRecognizerClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

form_recognizer_client = FormRecognizerClient(
    endpoint=endpoint, credential=AzureKeyCredential(key)
)
url = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/main/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png"
poller = form_recognizer_client.begin_recognize_receipts_from_url(receipt_url=url)
receipts = poller.result()

for idx, receipt in enumerate(receipts):
    print("--------Recognizing receipt #{}--------".format(idx+1))
    receipt_type = receipt.fields.get("ReceiptType")
    if receipt_type:
        print("Receipt Type: {} has confidence: {}".format(receipt_type.value, receipt_type.confidence))
    merchant_name = receipt.fields.get("MerchantName")
    if merchant_name:
        print("Merchant Name: {} has confidence: {}".format(merchant_name.value, merchant_name.confidence))
    transaction_date = receipt.fields.get("TransactionDate")
    if transaction_date:
        print("Transaction Date: {} has confidence: {}".format(transaction_date.value, transaction_date.confidence))
    if receipt.fields.get("Items"):
        print("Receipt items:")
        for idx, item in enumerate(receipt.fields.get("Items").value):
            print("...Item #{}".format(idx+1))
            item_name = item.value.get("Name")
            if item_name:
                print("......Item Name: {} has confidence: {}".format(item_name.value, item_name.confidence))
            item_quantity = item.value.get("Quantity")
            if item_quantity:
                print("......Item Quantity: {} has confidence: {}".format(item_quantity.value, item_quantity.confidence))
            item_price = item.value.get("Price")
            if item_price:
                print("......Individual Item Price: {} has confidence: {}".format(item_price.value, item_price.confidence))
            item_total_price = item.value.get("TotalPrice")
            if item_total_price:
                print("......Total Item Price: {} has confidence: {}".format(item_total_price.value, item_total_price.confidence))
    subtotal = receipt.fields.get("Subtotal")
    if subtotal:
        print("Subtotal: {} has confidence: {}".format(subtotal.value, subtotal.confidence))
    tax = receipt.fields.get("Tax")
    if tax:
        print("Tax: {} has confidence: {}".format(tax.value, tax.confidence))
    tip = receipt.fields.get("Tip")
    if tip:
        print("Tip: {} has confidence: {}".format(tip.value, tip.confidence))
    total = receipt.fields.get("Total")
    if total:
        print("Total: {} has confidence: {}".format(total.value, total.confidence))
    print("--------------------------------------")
close()None[source]

Close the FormRecognizerClient session.

class azure.ai.formrecognizer.FormRecognizerError(**kwargs: Any)[source]

Represents an error that occurred while training.

New in version v2.1: Support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.FormRecognizerError[source]

Converts a dict in the shape of a FormRecognizerError to the model itself.

Parameters

data (dict) – A dictionary in the shape of FormRecognizerError.

Returns

FormRecognizerError

Return type

FormRecognizerError

to_dict()Dict[source]

Returns a dict representation of FormRecognizerError.

Returns

dict

Return type

dict

code: str

Error code.

message: str

Error message.

class azure.ai.formrecognizer.FormSelectionMark(**kwargs: Any)[source]

Information about the extracted selection mark.

New in version v2.1: Support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.FormSelectionMark[source]

Converts a dict in the shape of a FormSelectionMark to the model itself.

Parameters

data (dict) – A dictionary in the shape of FormSelectionMark.

Returns

FormSelectionMark

Return type

FormSelectionMark

to_dict()Dict[source]

Returns a dict representation of FormSelectionMark.

Returns

dict

Return type

dict

bounding_box: List[azure.ai.formrecognizer._models.Point]

A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.

confidence: float

Measures the degree of certainty of the recognition result. Value is between [0.0, 1.0].

kind: str

For FormSelectionMark, this is “selectionMark”.

page_number: int

The 1-based number of the page in which this content is present.

state: str

“selected”, “unselected”.

Type

State of the selection mark. Possible values include

text: str

The text content - not returned for FormSelectionMark.

class azure.ai.formrecognizer.FormTable(**kwargs: Any)[source]

Information about the extracted table contained on a page.

New in version v2.1: The bounding_box property, support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.FormTable[source]

Converts a dict in the shape of a FormTable to the model itself.

Parameters

data (dict) – A dictionary in the shape of FormTable.

Returns

FormTable

Return type

FormTable

to_dict()Dict[source]

Returns a dict representation of FormTable.

Returns

dict

Return type

dict

bounding_box: List[azure.ai.formrecognizer._models.Point]

A list of 4 points representing the quadrilateral bounding box that outlines the table. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.

cells: List[azure.ai.formrecognizer._models.FormTableCell]

List of cells contained in the table.

column_count: int

Number of columns in table.

page_number: int

The 1-based number of the page in which this table is present.

row_count: int

Number of rows in table.

class azure.ai.formrecognizer.FormTableCell(**kwargs: Any)[source]

Represents a cell contained in a table recognized from the input document.

New in version v2.1: FormSelectionMark is added to the types returned in the list of field_elements, support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.FormTableCell[source]

Converts a dict in the shape of a FormTableCell to the model itself.

Parameters

data (dict) – A dictionary in the shape of FormTableCell.

Returns

FormTableCell

Return type

FormTableCell

to_dict()Dict[source]

Returns a dict representation of FormTableCell.

Returns

dict

Return type

dict

bounding_box: List[azure.ai.formrecognizer._models.Point]

A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.

column_index: int

Column index of the cell.

column_span: int

Number of columns spanned by this cell.

confidence: float

Measures the degree of certainty of the recognition result. Value is between [0.0, 1.0].

field_elements: List[Union[azure.ai.formrecognizer._models.FormElement, azure.ai.formrecognizer._models.FormWord, azure.ai.formrecognizer._models.FormLine, azure.ai.formrecognizer._models.FormSelectionMark]]

When include_field_elements is set to true, a list of elements constituting this cell is returned. The list constitutes of elements such as lines, words, and selection marks. For calls to begin_recognize_content(), this list is always populated.

Whether the current cell is a footer cell.

is_header: bool

Whether the current cell is a header cell.

page_number: int

The 1-based number of the page in which this content is present.

row_index: int

Row index of the cell.

row_span: int

Number of rows spanned by this cell.

text: str

Text content of the cell.

class azure.ai.formrecognizer.FormTrainingClient(endpoint: str, credential: Union[azure.core.credentials.AzureKeyCredential, azure.core.credentials.TokenCredential], **kwargs: Any)[source]

FormTrainingClient is the Form Recognizer interface to use for creating and managing custom models. It provides methods for training models on the forms you provide, as well as methods for viewing and deleting models, accessing account properties, copying models to another Form Recognizer resource, and composing models from a collection of existing models trained with labels.

Note

FormTrainingClient should be used with API versions <=v2.1. To use API versions 2022-08-31 and up, instantiate a DocumentModelAdministrationClient.

Parameters
Keyword Arguments

api_version (str or FormRecognizerApiVersion) – The API version of the service to use for requests. It defaults to API version v2.1. Setting to an older version may result in reduced feature compatibility. To use the latest supported API version and features, instantiate a DocumentModelAdministrationClient instead.

Example:

Creating the FormTrainingClient with an endpoint and API key.
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import FormTrainingClient
endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
Creating the FormTrainingClient with a token credential.
"""DefaultAzureCredential will use the values from these environment
variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET
"""
from azure.ai.formrecognizer import FormTrainingClient
from azure.identity import DefaultAzureCredential

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
credential = DefaultAzureCredential()

form_training_client = FormTrainingClient(endpoint, credential)
begin_copy_model(model_id: str, target: Dict[str, Union[str, int]], **kwargs: Any)azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.CustomFormModelInfo][source]

Copy a custom model stored in this resource (the source) to the user specified target Form Recognizer resource. This should be called with the source Form Recognizer resource (with the model that is intended to be copied). The target parameter should be supplied from the target resource’s output from calling the get_copy_authorization() method.

Parameters
  • model_id (str) – Model identifier of the model to copy to target resource.

  • Union[str, int]] target (Dict[str,) – The copy authorization generated from the target resource’s call to get_copy_authorization().

Keyword Arguments

continuation_token (str) – A continuation token to restart a poller from a saved state.

Returns

An instance of an LROPoller. Call result() on the poller object to return a CustomFormModelInfo.

Return type

LROPoller[CustomFormModelInfo]

Raises

HttpResponseError

Example:

Copy a model from the source resource to the target resource
source_client = FormTrainingClient(endpoint=source_endpoint, credential=AzureKeyCredential(source_key))

poller = source_client.begin_copy_model(
    model_id=source_model_id,
    target=target  # output from target client's call to get_copy_authorization()
)
copied_over_model = poller.result()

print("Model ID: {}".format(copied_over_model.model_id))
print("Status: {}".format(copied_over_model.status))
begin_create_composed_model(model_ids: List[str], **kwargs: Any)azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.CustomFormModel][source]

Creates a composed model from a collection of existing models that were trained with labels.

A composed model allows multiple models to be called with a single model ID. When a document is submitted to be analyzed with a composed model ID, a classification step is first performed to route it to the correct custom model.

Parameters

model_ids (list[str]) – List of model IDs to use in the composed model.

Keyword Arguments
  • model_name (str) – An optional, user-defined name to associate with your model.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

Returns

An instance of an LROPoller. Call result() on the poller object to return a CustomFormModel.

Return type

LROPoller[CustomFormModel]

Raises

HttpResponseError

New in version v2.1: The begin_create_composed_model client method

Example:

Create a composed model
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import FormTrainingClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]
po_supplies = os.environ['PURCHASE_ORDER_OFFICE_SUPPLIES_SAS_URL_V2']
po_equipment = os.environ['PURCHASE_ORDER_OFFICE_EQUIPMENT_SAS_URL_V2']
po_furniture = os.environ['PURCHASE_ORDER_OFFICE_FURNITURE_SAS_URL_V2']
po_cleaning_supplies = os.environ['PURCHASE_ORDER_OFFICE_CLEANING_SUPPLIES_SAS_URL_V2']

form_training_client = FormTrainingClient(endpoint=endpoint, credential=AzureKeyCredential(key))
supplies_poller = form_training_client.begin_training(
    po_supplies, use_training_labels=True, model_name="Purchase order - Office supplies"
)
equipment_poller = form_training_client.begin_training(
    po_equipment, use_training_labels=True, model_name="Purchase order - Office Equipment"
)
furniture_poller = form_training_client.begin_training(
    po_furniture, use_training_labels=True, model_name="Purchase order - Furniture"
)
cleaning_supplies_poller = form_training_client.begin_training(
    po_cleaning_supplies, use_training_labels=True, model_name="Purchase order - Cleaning Supplies"
)
supplies_model = supplies_poller.result()
equipment_model = equipment_poller.result()
furniture_model = furniture_poller.result()
cleaning_supplies_model = cleaning_supplies_poller.result()

models_trained_with_labels = [
    supplies_model.model_id,
    equipment_model.model_id,
    furniture_model.model_id,
    cleaning_supplies_model.model_id
]

poller = form_training_client.begin_create_composed_model(
    models_trained_with_labels, model_name="Office Supplies Composed Model"
)
model = poller.result()

print("Office Supplies Composed Model Info:")
print("Model ID: {}".format(model.model_id))
print("Model name: {}".format(model.model_name))
print("Is this a composed model?: {}".format(model.properties.is_composed_model))
print("Status: {}".format(model.status))
print("Composed model creation started on: {}".format(model.training_started_on))
print("Creation completed on: {}".format(model.training_completed_on))

begin_training(training_files_url: str, use_training_labels: bool, **kwargs: Any)azure.core.polling._poller.LROPoller[azure.ai.formrecognizer._models.CustomFormModel][source]

Create and train a custom model. The request must include a training_files_url parameter that is an externally accessible Azure storage blob container URI (preferably a Shared Access Signature URI). Note that a container URI (without SAS) is accepted only when the container is public or has a managed identity configured, see more about configuring managed identities to work with Form Recognizer here: https://docs.microsoft.com/azure/applied-ai-services/form-recognizer/managed-identities. Models are trained using documents that are of the following content type - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’, or ‘image/bmp’. Other types of content in the container is ignored.

Parameters
  • training_files_url (str) – An Azure Storage blob container’s SAS URI. A container URI (without SAS) can be used if the container is public or has a managed identity configured. For more information on setting up a training data set, see: https://aka.ms/azsdk/formrecognizer/buildtrainingset.

  • use_training_labels (bool) – Whether to train with labels or not. Corresponding labeled files must exist in the blob container if set to True.

Keyword Arguments
  • prefix (str) – A case-sensitive prefix string to filter documents in the source path for training. For example, when using an Azure storage blob URI, use the prefix to restrict sub folders for training.

  • include_subfolders (bool) – A flag to indicate if subfolders within the set of prefix folders will also need to be included when searching for content to be preprocessed. Not supported if training with labels.

  • model_name (str) – An optional, user-defined name to associate with your model.

  • continuation_token (str) – A continuation token to restart a poller from a saved state.

Returns

An instance of an LROPoller. Call result() on the poller object to return a CustomFormModel.

Return type

LROPoller[CustomFormModel]

Raises

HttpResponseError – Note that if the training fails, the exception is raised, but a model with an “invalid” status is still created. You can delete this model by calling delete_model()

New in version v2.1: The model_name keyword argument

Example:

Training a model (without labels) with your custom forms.
from azure.ai.formrecognizer import FormTrainingClient
from azure.core.credentials import AzureKeyCredential

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]
container_sas_url = os.environ["CONTAINER_SAS_URL_V2"]

form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
poller = form_training_client.begin_training(container_sas_url, use_training_labels=False)
model = poller.result()

# Custom model information
print("Model ID: {}".format(model.model_id))
print("Status: {}".format(model.status))
print("Model name: {}".format(model.model_name))
print("Training started on: {}".format(model.training_started_on))
print("Training completed on: {}".format(model.training_completed_on))

print("Recognized fields:")
# Looping through the submodels, which contains the fields they were trained on
for submodel in model.submodels:
    print("...The submodel has form type '{}'".format(submodel.form_type))
    for name, field in submodel.fields.items():
        print("...The model found field '{}' to have label '{}'".format(
            name, field.label
        ))
close()None[source]

Close the FormTrainingClient session.

delete_model(model_id: str, **kwargs: Any)None[source]

Mark model for deletion. Model artifacts will be permanently removed within a predetermined period.

Parameters

model_id (str) – Model identifier.

Return type

None

Raises

HttpResponseError or ResourceNotFoundError

Example:

Delete a custom model.
form_training_client.delete_model(model_id=custom_model.model_id)

try:
    form_training_client.get_custom_model(model_id=custom_model.model_id)
except ResourceNotFoundError:
    print("Successfully deleted model with id {}".format(custom_model.model_id))
get_account_properties(**kwargs: Any)azure.ai.formrecognizer._models.AccountProperties[source]

Get information about the models on the form recognizer account.

Returns

Summary of models on account - custom model count, custom model limit.

Return type

AccountProperties

Raises

HttpResponseError

Example:

Get properties for the form recognizer account.
form_training_client = FormTrainingClient(endpoint=endpoint, credential=AzureKeyCredential(key))
# First, we see how many custom models we have, and what our limit is
account_properties = form_training_client.get_account_properties()
print("Our account has {} custom models, and we can have at most {} custom models\n".format(
    account_properties.custom_model_count, account_properties.custom_model_limit
))
get_copy_authorization(resource_id: str, resource_region: str, **kwargs: Any)Dict[str, Union[str, int]][source]

Generate authorization for copying a custom model into the target Form Recognizer resource. This should be called by the target resource (where the model will be copied to) and the output can be passed as the target parameter into begin_copy_model().

Parameters
Returns

A dictionary with values for the copy authorization - “modelId”, “accessToken”, “resourceId”, “resourceRegion”, and “expirationDateTimeTicks”.

Return type

Dict[str, Union[str, int]]

Raises

HttpResponseError

Example:

Authorize the target resource to receive the copied model
target_client = FormTrainingClient(endpoint=target_endpoint, credential=AzureKeyCredential(target_key))

target = target_client.get_copy_authorization(
    resource_region=target_region,
    resource_id=target_resource_id
)
# model ID that target client will use to access the model once copy is complete
print("Model ID: {}".format(target["modelId"]))
get_custom_model(model_id: str, **kwargs: Any)azure.ai.formrecognizer._models.CustomFormModel[source]

Get a description of a custom model, including the types of forms it can recognize, and the fields it will extract for each form type.

Parameters

model_id (str) – Model identifier.

Returns

CustomFormModel

Return type

CustomFormModel

Raises

HttpResponseError or ResourceNotFoundError

Example:

Get a custom model with a model ID.
custom_model = form_training_client.get_custom_model(model_id=model.model_id)
print("\nModel ID: {}".format(custom_model.model_id))
print("Status: {}".format(custom_model.status))
print("Model name: {}".format(custom_model.model_name))
print("Is this a composed model?: {}".format(custom_model.properties.is_composed_model))
print("Training started on: {}".format(custom_model.training_started_on))
print("Training completed on: {}".format(custom_model.training_completed_on))
get_form_recognizer_client(**kwargs: Any)azure.ai.formrecognizer._form_recognizer_client.FormRecognizerClient[source]

Get an instance of a FormRecognizerClient from FormTrainingClient.

Return type

FormRecognizerClient

Returns

A FormRecognizerClient

list_custom_models(**kwargs: Any)azure.core.paging.ItemPaged[azure.ai.formrecognizer._models.CustomFormModelInfo][source]

List information for each model, including model id, model status, and when it was created and last modified.

Returns

ItemPaged[CustomFormModelInfo]

Return type

ItemPaged

Raises

HttpResponseError

Example:

List model information for each model on the account.
custom_models = form_training_client.list_custom_models()

print("We have models with the following IDs:")
for model_info in custom_models:
    print(model_info.model_id)
class azure.ai.formrecognizer.FormWord(**kwargs: Any)[source]

Represents a word recognized from the input document.

New in version v2.1: Support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.FormWord[source]

Converts a dict in the shape of a FormWord to the model itself.

Parameters

data (dict) – A dictionary in the shape of FormWord.

Returns

FormWord

Return type

FormWord

to_dict()Dict[source]

Returns a dict representation of FormWord.

Returns

dict

Return type

dict

bounding_box: List[azure.ai.formrecognizer._models.Point]

A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.

confidence: float

Measures the degree of certainty of the recognition result. Value is between [0.0, 1.0].

kind: str

For FormWord, this is “word”.

page_number: int

The 1-based number of the page in which this content is present.

text: str

The text content of the word.

class azure.ai.formrecognizer.LengthUnit(value)[source]

The unit used by the width, height and bounding box properties. For images, the unit is “pixel”. For PDF, the unit is “inch”.

INCH = 'inch'
PIXEL = 'pixel'
class azure.ai.formrecognizer.ModelBuildMode(value)[source]

The mode used when building custom models.

For more information, see https://aka.ms/azsdk/formrecognizer/buildmode.

NEURAL = 'neural'
TEMPLATE = 'template'
class azure.ai.formrecognizer.OperationDetails(**kwargs: Any)[source]

OperationDetails consists of information about the model operation, including the result or error of the operation if it has completed.

Note that operation information only persists for 24 hours. If the operation was successful, the model can also be accessed using the get_document_model(), list_document_models(), get_document_classifier(), list_document_classifiers() APIs.

New in version 2023-07-31: The documentClassifierBuild kind and DocumentClassifierDetails result.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.OperationDetails[source]

Converts a dict in the shape of a OperationDetails to the model itself.

Parameters

data (dict) – A dictionary in the shape of OperationDetails.

Returns

OperationDetails

Return type

OperationDetails

to_dict()Dict[source]

Returns a dict representation of OperationDetails.

Returns

dict

Return type

dict

api_version: Optional[str]

API version used to create this operation.

created_on: datetime.datetime

Date and time (UTC) when the operation was created.

error: Optional[azure.ai.formrecognizer._models.DocumentAnalysisError]

Encountered error, includes the error code, message, and details for why the operation failed.

kind: str

“documentModelBuild”, “documentModelCompose”, “documentModelCopyTo”, “documentClassifierBuild”.

Type

Type of operation. Possible values include

last_updated_on: datetime.datetime

Date and time (UTC) when the operation was last updated.

operation_id: str

Operation ID.

percent_completed: Optional[int]

Operation progress (0-100).

resource_location: str

URL of the resource targeted by this operation.

result: Optional[Union[azure.ai.formrecognizer._models.DocumentModelDetails, azure.ai.formrecognizer._models.DocumentClassifierDetails]]

Operation result upon success. Returns a DocumentModelDetails or DocumentClassifierDetails which contains all the information about the model.

status: str

“notStarted”, “running”, “failed”, “succeeded”, “canceled”.

Type

Operation status. Possible values include

tags: Optional[Dict[str, str]]

List of user defined key-value tag attributes associated with the model.

class azure.ai.formrecognizer.OperationSummary(**kwargs: Any)[source]

Model operation information, including the kind and status of the operation, when it was created, and more.

Note that operation information only persists for 24 hours. If the operation was successful, the model can be accessed using the get_document_model(), list_document_models(), get_document_classifier(), list_document_classifiers() APIs. To find out why an operation failed, use get_operation() and provide the operation_id.

New in version 2023-07-31: The documentClassifierBuild kind.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.OperationSummary[source]

Converts a dict in the shape of a OperationSummary to the model itself.

Parameters

data (dict) – A dictionary in the shape of OperationSummary.

Returns

OperationSummary

Return type

OperationSummary

to_dict()Dict[source]

Returns a dict representation of OperationSummary.

Returns

dict

Return type

dict

api_version: Optional[str]

API version used to create this operation.

created_on: datetime.datetime

Date and time (UTC) when the operation was created.

kind: str

“documentModelBuild”, “documentModelCompose”, “documentModelCopyTo”, “documentClassifierBuild”.

Type

Type of operation. Possible values include

last_updated_on: datetime.datetime

Date and time (UTC) when the operation was last updated.

operation_id: str

Operation ID.

percent_completed: Optional[int]

Operation progress (0-100).

resource_location: str

URL of the resource targeted by this operation.

status: str

“notStarted”, “running”, “failed”, “succeeded”, “canceled”.

Type

Operation status. Possible values include

tags: Optional[Dict[str, str]]

List of user defined key-value tag attributes associated with the model.

class azure.ai.formrecognizer.Point(x: float, y: float)[source]

The x, y coordinate of a point on a bounding box or polygon.

New in version v2.1: Support for to_dict and from_dict methods

Create new instance of Point(x, y)

count(value, /)

Return number of occurrences of value.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.Point[source]

Converts a dict in the shape of a Point to the model itself.

Parameters

data (dict) – A dictionary in the shape of Point.

Returns

Point

Return type

Point

index(value, start=0, stop=9223372036854775807, /)

Return first index of value.

Raises ValueError if the value is not present.

to_dict()Dict[source]

Returns a dict representation of Point.

Returns

dict

Return type

dict

x: float

x-coordinate

y: float

y-coordinate

class azure.ai.formrecognizer.QuotaDetails(**kwargs: Any)[source]

Quota used, limit, and next reset date/time.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.QuotaDetails[source]

Converts a dict in the shape of a QuotaDetails to the model itself.

Parameters

data (dict) – A dictionary in the shape of QuotaDetails.

Returns

QuotaDetails

Return type

QuotaDetails

to_dict()Dict[str, Any][source]

Returns a dict representation of QuotaDetails.

Returns

Dict[str, Any]

Return type

Dict[str, Any]

quota: int

Resource quota limit.

quota_resets_on: datetime.datetime

Date/time when the resource quota usage will be reset.

used: int

Amount of the resource quota used.

class azure.ai.formrecognizer.RecognizedForm(**kwargs: Any)[source]

Represents a form that has been recognized by a trained or prebuilt model. The fields property contains the form fields that were extracted from the form. Tables, text lines/words, and selection marks are extracted per page and found in the pages property.

New in version v2.1: The form_type_confidence and model_id properties, support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.RecognizedForm[source]

Converts a dict in the shape of a RecognizedForm to the model itself.

Parameters

data (dict) – A dictionary in the shape of RecognizedForm.

Returns

RecognizedForm

Return type

RecognizedForm

to_dict()Dict[source]

Returns a dict representation of RecognizedForm.

Returns

dict

Return type

dict

fields: Dict[str, azure.ai.formrecognizer._models.FormField]

A dictionary of the fields found on the form. The fields dictionary keys are the name of the field. For models trained with labels, this is the training-time label of the field. For models trained without labels, a unique name is generated for each field.

form_type: str

The type of form the model identified the submitted form to be.

form_type_confidence: int

Confidence of the type of form the model identified the submitted form to be.

model_id: str

Model identifier of model used to analyze form if not using a prebuilt model.

page_range: azure.ai.formrecognizer._models.FormPageRange

The first and last page number of the input form.

pages: List[azure.ai.formrecognizer._models.FormPage]

A list of pages recognized from the input document. Contains lines, words, selection marks, tables and page metadata.

class azure.ai.formrecognizer.ResourceDetails(**kwargs: Any)[source]

Details regarding the Form Recognizer resource.

New in version 2023-07-31: The neural_document_model_quota property.

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.ResourceDetails[source]

Converts a dict in the shape of a ResourceDetails to the model itself.

Parameters

data (dict) – A dictionary in the shape of ResourceDetails.

Returns

ResourceDetails

Return type

ResourceDetails

to_dict()Dict[source]

Returns a dict representation of ResourceDetails.

Returns

dict

Return type

dict

custom_document_models: azure.ai.formrecognizer._models.CustomDocumentModelsDetails

Details regarding the custom models under the Form Recognizer resource.

neural_document_model_quota: Optional[azure.ai.formrecognizer._models.QuotaDetails]

Quota details regarding the custom neural document model builds under the Form Recognizer resource.

class azure.ai.formrecognizer.TextAppearance(**kwargs: Any)[source]

An object representing the appearance of the text line.

New in version v2.1: Support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.TextAppearance[source]

Converts a dict in the shape of a TextAppearance to the model itself.

Parameters

data (dict) – A dictionary in the shape of TextAppearance.

Returns

TextAppearance

Return type

TextAppearance

to_dict()Dict[source]

Returns a dict representation of TextAppearance.

Returns

dict

Return type

dict

style_confidence: float

The confidence of text line style.

style_name: str

The text line style name. Possible values include: “other”, “handwriting”.

class azure.ai.formrecognizer.TrainingDocumentInfo(**kwargs: Any)[source]

Report for an individual document used for training a custom model.

New in version v2.1: The model_id property, support for to_dict and from_dict methods

classmethod from_dict(data: Dict)azure.ai.formrecognizer._models.TrainingDocumentInfo[source]

Converts a dict in the shape of a TrainingDocumentInfo to the model itself.

Parameters

data (dict) – A dictionary in the shape of TrainingDocumentInfo.

Returns

TrainingDocumentInfo

Return type

TrainingDocumentInfo

to_dict()Dict[source]

Returns a dict representation of TrainingDocumentInfo.

Returns

dict

Return type

dict

errors: List[azure.ai.formrecognizer._models.FormRecognizerError]

List of any errors for document.

model_id: str

The model ID that used the document to train.

name: str

The name of the document.

page_count: int

Total number of pages trained.

status: str

The TrainingStatus of the training operation. Possible values include: ‘succeeded’, ‘partiallySucceeded’, ‘failed’.

class azure.ai.formrecognizer.TrainingStatus(value)[source]

Status of the training operation.

FAILED = 'failed'
PARTIALLY_SUCCEEDED = 'partiallySucceeded'
SUCCEEDED = 'succeeded'
azure.ai.formrecognizer.TargetAuthorization(x)