azure.ai.formrecognizer package¶
-
class
azure.ai.formrecognizer.
AccountInfo
(**kwargs)[source]¶ Info regarding models under the Form Recognizer resource.
- Variables
-
class
azure.ai.formrecognizer.
AccountProperties
(**kwargs)[source]¶ Summary of all the custom models on the account.
- Variables
New in version v2.1: Support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
AnalyzeResult
(**kwargs)[source]¶ Document analysis result.
- Variables
api_version (str) – API version used to produce this result. Possible values include: “2021-09-30-preview”.
model_id (str) – Model ID used to produce this result.
content (str) – Concatenate string representation of all textual and visual elements in reading order.
pages (list[DocumentPage]) – Analyzed pages.
tables (list[DocumentTable]) – Extracted tables.
key_value_pairs (list[DocumentKeyValuePair]) – Extracted key-value pairs.
entities (list[DocumentEntity]) – Extracted entities.
styles (list[DocumentStyle]) – Extracted font styles.
documents (list[AnalyzedDocument]) – Extracted documents.
-
class
azure.ai.formrecognizer.
AnalyzedDocument
(**kwargs)[source]¶ An object describing the location and semantic content of a document.
- Variables
doc_type (str) – The type of document that was analyzed.
bounding_regions (list[BoundingRegion]) – Bounding regions covering the document.
spans (list[DocumentSpan]) – The location of the document in the reading order concatenated content.
fields (dict[str, DocumentField]) – A dictionary of named field values.
confidence (float) – Confidence of correctly extracting the document.
-
class
azure.ai.formrecognizer.
BoundingRegion
(**kwargs)[source]¶ The bounding region corresponding to a page.
- Variables
bounding_box (list[Point]) – A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order relative to the text orientation: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
page_number (int) – The 1-based number of the page in which this content is present.
-
class
azure.ai.formrecognizer.
CustomFormModel
(**kwargs)[source]¶ Represents a trained model.
- Variables
model_id (str) – The unique identifier of this model.
status (str) – Status indicating the model’s readiness for use,
CustomFormModelStatus
. Possible values include: ‘creating’, ‘ready’, ‘invalid’.training_started_on (datetime) – The date and time (UTC) when model training was started.
training_completed_on (datetime) – Date and time (UTC) when model training completed.
submodels (list[CustomFormSubmodel]) – A list of submodels that are part of this model, each of which can recognize and extract fields from a different type of form.
errors (list[FormRecognizerError]) – List of any training errors.
training_documents (list[TrainingDocumentInfo]) – Metadata about each of the documents used to train the model.
model_name (str) – Optional user defined model name.
properties (CustomFormModelProperties) – Optional model properties.
New in version v2.1: The model_name and properties properties, support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
CustomFormModelField
(**kwargs)[source]¶ A field that the model will extract from forms it analyzes.
- Variables
New in version v2.1: Support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
CustomFormModelInfo
(**kwargs)[source]¶ Custom model information.
- Variables
model_id (str) – The unique identifier of the model.
status (str) – The status of the model,
CustomFormModelStatus
. Possible values include: ‘creating’, ‘ready’, ‘invalid’.training_started_on (datetime) – Date and time (UTC) when model training was started.
training_completed_on (datetime) – Date and time (UTC) when model training completed.
model_name (str) – Optional user defined model name.
properties (CustomFormModelProperties) – Optional model properties.
New in version v2.1: The model_name and properties properties, support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
CustomFormModelProperties
(**kwargs)[source]¶ Optional model properties.
- Variables
is_composed_model (bool) – Is this model composed? (default: false).
New in version v2.1: Support for to_dict and from_dict methods
-
classmethod
from_dict
(data: dict) → azure.ai.formrecognizer._models.CustomFormModelProperties[source]¶ Converts a dict in the shape of a CustomFormModelProperties to the model itself.
- Parameters
data (dict) – A dictionary in the shape of CustomFormModelProperties.
- Returns
CustomFormModelProperties
- Return type
-
class
azure.ai.formrecognizer.
CustomFormModelStatus
(value)[source]¶ Status indicating the model’s readiness for use.
-
CREATING
= 'creating'¶
-
INVALID
= 'invalid'¶
-
READY
= 'ready'¶
-
-
class
azure.ai.formrecognizer.
CustomFormSubmodel
(**kwargs)[source]¶ Represents a submodel that extracts fields from a specific type of form.
- Variables
model_id (str) – Model identifier of the submodel.
accuracy (float) – The mean of the model’s field accuracies.
fields (dict[str, CustomFormModelField]) – A dictionary of the fields that this submodel will recognize from the input document. The fields dictionary keys are the name of the field. For models trained with labels, this is the training-time label of the field. For models trained without labels, a unique name is generated for each field.
form_type (str) – Type of form this submodel recognizes.
New in version v2.1: The model_id property, support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
DocTypeInfo
(**kwargs)[source]¶ DocTypeInfo represents a document type that a model can recognize, including its fields and types, and the confidence for those fields.
- Variables
-
class
azure.ai.formrecognizer.
DocumentAnalysisApiVersion
(value)[source]¶ Form Recognizer API versions supported by DocumentAnalysisClient and DocumentModelAdministrationClient.
-
V2021_09_30_PREVIEW
= '2021-09-30-preview'¶ This is the default version
-
-
class
azure.ai.formrecognizer.
DocumentAnalysisClient
(endpoint: str, credential: Union[AzureKeyCredential, TokenCredential], **kwargs: Any)[source]¶ DocumentAnalysisClient analyzes information from documents and images. It is the interface to use for analyzing with prebuilt models (receipts, business cards, invoices, identity documents), analyzing layout from documents, analyzing general document types, and analyzing custom documents with built models. It provides different methods based on inputs from a URL and inputs from a stream.
Note
DocumentAnalysisClient should be used with API versions 2021-09-30-preview and up. To use API versions <=v2.1, instantiate a FormRecognizerClient.
- Parameters
endpoint (str) – Supported Cognitive Services endpoints (protocol and hostname, for example: https://westus2.api.cognitive.microsoft.com).
credential (
AzureKeyCredential
orTokenCredential
) – Credentials needed for the client to connect to Azure. This is an instance of AzureKeyCredential if using an API key or a token credential fromazure.identity
.
- Keyword Arguments
api_version (str or DocumentAnalysisApiVersion) – The API version of the service to use for requests. It defaults to the latest service version. Setting to an older version may result in reduced feature compatibility. To use API versions <=v2.1, instantiate a FormRecognizerClient.
New in version 2021-09-30-preview: The DocumentAnalysisClient and its client methods.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentAnalysisClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_analysis_client = DocumentAnalysisClient(endpoint, AzureKeyCredential(key))
"""DefaultAzureCredential will use the values from these environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET """ from azure.ai.formrecognizer import DocumentAnalysisClient from azure.identity import DefaultAzureCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] credential = DefaultAzureCredential() document_analysis_client = DocumentAnalysisClient(endpoint, credential)
-
begin_analyze_document
(model: str, document: Union[bytes, IO[bytes]], **kwargs: Any) → LROPoller[AnalyzeResult][source]¶ Analyze field text and semantic values from a given document.
- Parameters
model (str) – A unique model identifier can be passed in as a string. Use this to specify the custom model ID or prebuilt model ID. Prebuilt model IDs supported can be found here: https://aka.ms/azsdk/formrecognizer/models
document (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
pages (str) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=”1-3, 5-6”. Separate each page number or range with a comma.
locale (str) – Locale hint of the input document. See supported locales here: https://aka.ms/azsdk/formrecognizer/supportedlocales.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a
AnalyzeResult
.- Return type
- Raises
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentAnalysisClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_analysis_client = DocumentAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) with open(path_to_sample_documents, "rb") as f: poller = document_analysis_client.begin_analyze_document( "prebuilt-invoice", document=f, locale="en-US" ) invoices = poller.result() for idx, invoice in enumerate(invoices.documents): print("--------Recognizing invoice #{}--------".format(idx + 1)) vendor_name = invoice.fields.get("VendorName") if vendor_name: print( "Vendor Name: {} has confidence: {}".format( vendor_name.value, vendor_name.confidence ) ) vendor_address = invoice.fields.get("VendorAddress") if vendor_address: print( "Vendor Address: {} has confidence: {}".format( vendor_address.value, vendor_address.confidence ) ) vendor_address_recipient = invoice.fields.get("VendorAddressRecipient") if vendor_address_recipient: print( "Vendor Address Recipient: {} has confidence: {}".format( vendor_address_recipient.value, vendor_address_recipient.confidence ) ) customer_name = invoice.fields.get("CustomerName") if customer_name: print( "Customer Name: {} has confidence: {}".format( customer_name.value, customer_name.confidence ) ) customer_id = invoice.fields.get("CustomerId") if customer_id: print( "Customer Id: {} has confidence: {}".format( customer_id.value, customer_id.confidence ) ) customer_address = invoice.fields.get("CustomerAddress") if customer_address: print( "Customer Address: {} has confidence: {}".format( customer_address.value, customer_address.confidence ) ) customer_address_recipient = invoice.fields.get("CustomerAddressRecipient") if customer_address_recipient: print( "Customer Address Recipient: {} has confidence: {}".format( customer_address_recipient.value, customer_address_recipient.confidence, ) ) invoice_id = invoice.fields.get("InvoiceId") if invoice_id: print( "Invoice Id: {} has confidence: {}".format( invoice_id.value, invoice_id.confidence ) ) invoice_date = invoice.fields.get("InvoiceDate") if invoice_date: print( "Invoice Date: {} has confidence: {}".format( invoice_date.value, invoice_date.confidence ) ) invoice_total = invoice.fields.get("InvoiceTotal") if invoice_total: print( "Invoice Total: {} has confidence: {}".format( invoice_total.value, invoice_total.confidence ) ) due_date = invoice.fields.get("DueDate") if due_date: print( "Due Date: {} has confidence: {}".format( due_date.value, due_date.confidence ) ) purchase_order = invoice.fields.get("PurchaseOrder") if purchase_order: print( "Purchase Order: {} has confidence: {}".format( purchase_order.value, purchase_order.confidence ) ) billing_address = invoice.fields.get("BillingAddress") if billing_address: print( "Billing Address: {} has confidence: {}".format( billing_address.value, billing_address.confidence ) ) billing_address_recipient = invoice.fields.get("BillingAddressRecipient") if billing_address_recipient: print( "Billing Address Recipient: {} has confidence: {}".format( billing_address_recipient.value, billing_address_recipient.confidence, ) ) shipping_address = invoice.fields.get("ShippingAddress") if shipping_address: print( "Shipping Address: {} has confidence: {}".format( shipping_address.value, shipping_address.confidence ) ) shipping_address_recipient = invoice.fields.get("ShippingAddressRecipient") if shipping_address_recipient: print( "Shipping Address Recipient: {} has confidence: {}".format( shipping_address_recipient.value, shipping_address_recipient.confidence, ) ) print("Invoice items:") for idx, item in enumerate(invoice.fields.get("Items").value): print("...Item #{}".format(idx + 1)) item_description = item.value.get("Description") if item_description: print( "......Description: {} has confidence: {}".format( item_description.value, item_description.confidence ) ) item_quantity = item.value.get("Quantity") if item_quantity: print( "......Quantity: {} has confidence: {}".format( item_quantity.value, item_quantity.confidence ) ) unit = item.value.get("Unit") if unit: print( "......Unit: {} has confidence: {}".format( unit.value, unit.confidence ) ) unit_price = item.value.get("UnitPrice") if unit_price: print( "......Unit Price: {} has confidence: {}".format( unit_price.value, unit_price.confidence ) ) product_code = item.value.get("ProductCode") if product_code: print( "......Product Code: {} has confidence: {}".format( product_code.value, product_code.confidence ) ) item_date = item.value.get("Date") if item_date: print( "......Date: {} has confidence: {}".format( item_date.value, item_date.confidence ) ) tax = item.value.get("Tax") if tax: print( "......Tax: {} has confidence: {}".format(tax.value, tax.confidence) ) amount = item.value.get("Amount") if amount: print( "......Amount: {} has confidence: {}".format( amount.value, amount.confidence ) ) subtotal = invoice.fields.get("SubTotal") if subtotal: print( "Subtotal: {} has confidence: {}".format( subtotal.value, subtotal.confidence ) ) total_tax = invoice.fields.get("TotalTax") if total_tax: print( "Total Tax: {} has confidence: {}".format( total_tax.value, total_tax.confidence ) ) previous_unpaid_balance = invoice.fields.get("PreviousUnpaidBalance") if previous_unpaid_balance: print( "Previous Unpaid Balance: {} has confidence: {}".format( previous_unpaid_balance.value, previous_unpaid_balance.confidence ) ) amount_due = invoice.fields.get("AmountDue") if amount_due: print( "Amount Due: {} has confidence: {}".format( amount_due.value, amount_due.confidence ) ) service_start_date = invoice.fields.get("ServiceStartDate") if service_start_date: print( "Service Start Date: {} has confidence: {}".format( service_start_date.value, service_start_date.confidence ) ) service_end_date = invoice.fields.get("ServiceEndDate") if service_end_date: print( "Service End Date: {} has confidence: {}".format( service_end_date.value, service_end_date.confidence ) ) service_address = invoice.fields.get("ServiceAddress") if service_address: print( "Service Address: {} has confidence: {}".format( service_address.value, service_address.confidence ) ) service_address_recipient = invoice.fields.get("ServiceAddressRecipient") if service_address_recipient: print( "Service Address Recipient: {} has confidence: {}".format( service_address_recipient.value, service_address_recipient.confidence, ) ) remittance_address = invoice.fields.get("RemittanceAddress") if remittance_address: print( "Remittance Address: {} has confidence: {}".format( remittance_address.value, remittance_address.confidence ) ) remittance_address_recipient = invoice.fields.get("RemittanceAddressRecipient") if remittance_address_recipient: print( "Remittance Address Recipient: {} has confidence: {}".format( remittance_address_recipient.value, remittance_address_recipient.confidence, ) )
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentAnalysisClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] model_id = os.getenv("CUSTOM_BUILT_MODEL_ID", custom_model_id) document_analysis_client = DocumentAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) # Make sure your document's type is included in the list of document types the custom model can analyze with open(path_to_sample_documents, "rb") as f: poller = document_analysis_client.begin_analyze_document( model=model_id, document=f ) result = poller.result() for idx, document in enumerate(result.documents): print("--------Analyzing document #{}--------".format(idx + 1)) print("Document has type {}".format(document.doc_type)) print("Document has confidence {}".format(document.confidence)) print("Document was analyzed by model with ID {}".format(result.model_id)) for name, field in document.fields.items(): field_value = field.value if field.value else field.content print("......found field of type '{}' with value '{}' and with confidence {}".format(field.value_type, field_value, field.confidence)) # iterate over tables, lines, and selection marks on each page for page in result.pages: print("\nLines found on page {}".format(page.page_number)) for line in page.lines: print("...Line '{}'".format(line.content)) for word in page.words: print( "...Word '{}' has a confidence of {}".format( word.content, word.confidence ) ) for selection_mark in page.selection_marks: print( "...Selection mark is '{}' and has a confidence of {}".format( selection_mark.state, selection_mark.confidence ) ) for i, table in enumerate(result.tables): print("\nTable {} can be found on page:".format(i + 1)) for region in table.bounding_regions: print("...{}".format(i + 1, region.page_number)) for cell in table.cells: print( "...Cell[{}][{}] has content '{}'".format( cell.row_index, cell.column_index, cell.content ) ) print("-----------------------------------")
-
begin_analyze_document_from_url
(model: str, document_url: str, **kwargs: Any) → LROPoller[AnalyzeResult][source]¶ Analyze field text and semantic values from a given document. The input must be the location (URL) of the document to be analyzed.
- Parameters
model (str) – A unique model identifier can be passed in as a string. Use this to specify the custom model ID or prebuilt model ID. Prebuilt model IDs supported can be found here: https://aka.ms/azsdk/formrecognizer/models
document_url (str) – The URL of the document to analyze. The input must be a valid, encoded, and publicly accessible URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
pages (str) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=”1-3, 5-6”. Separate each page number or range with a comma.
locale (str) – Locale hint of the input document. See supported locales here: https://aka.ms/azsdk/formrecognizer/supportedlocales.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a
AnalyzeResult
.- Return type
- Raises
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentAnalysisClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_analysis_client = DocumentAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) url = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/main/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png" poller = document_analysis_client.begin_analyze_document_from_url( "prebuilt-receipt", document_url=url ) receipts = poller.result() for idx, receipt in enumerate(receipts.documents): print("--------Recognizing receipt #{}--------".format(idx + 1)) receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print( "Receipt Type: {} has confidence: {}".format( receipt_type.value, receipt_type.confidence ) ) merchant_name = receipt.fields.get("MerchantName") if merchant_name: print( "Merchant Name: {} has confidence: {}".format( merchant_name.value, merchant_name.confidence ) ) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print( "Transaction Date: {} has confidence: {}".format( transaction_date.value, transaction_date.confidence ) ) if receipt.fields.get("Items"): print("Receipt items:") for idx, item in enumerate(receipt.fields.get("Items").value): print("...Item #{}".format(idx + 1)) item_name = item.value.get("Name") if item_name: print( "......Item Name: {} has confidence: {}".format( item_name.value, item_name.confidence ) ) item_quantity = item.value.get("Quantity") if item_quantity: print( "......Item Quantity: {} has confidence: {}".format( item_quantity.value, item_quantity.confidence ) ) item_price = item.value.get("Price") if item_price: print( "......Individual Item Price: {} has confidence: {}".format( item_price.value, item_price.confidence ) ) item_total_price = item.value.get("TotalPrice") if item_total_price: print( "......Total Item Price: {} has confidence: {}".format( item_total_price.value, item_total_price.confidence ) ) subtotal = receipt.fields.get("Subtotal") if subtotal: print( "Subtotal: {} has confidence: {}".format( subtotal.value, subtotal.confidence ) ) tax = receipt.fields.get("Tax") if tax: print("Tax: {} has confidence: {}".format(tax.value, tax.confidence)) tip = receipt.fields.get("Tip") if tip: print("Tip: {} has confidence: {}".format(tip.value, tip.confidence)) total = receipt.fields.get("Total") if total: print("Total: {} has confidence: {}".format(total.value, total.confidence)) print("--------------------------------------")
-
close
() → None[source]¶ Close the
DocumentAnalysisClient
session.
-
class
azure.ai.formrecognizer.
DocumentAnalysisError
(**kwargs)[source]¶ DocumentAnalysisError contains the details of the error returned by the service.
- Variables
message (str) – Error message.
target (str) – Target of the error.
details (list[DocumentAnalysisError]) – List of detailed errors.
innererror (DocumentAnalysisInnerError) – Detailed error.
-
class
azure.ai.formrecognizer.
DocumentAnalysisInnerError
(**kwargs)[source]¶ Inner error details for the DocumentAnalysisError.
- Variables
message – Error message.
innererror (DocumentAnalysisInnerError) – Detailed error.
-
classmethod
from_dict
(data: dict) → azure.ai.formrecognizer._models.DocumentAnalysisInnerError[source]¶ Converts a dict in the shape of a DocumentAnalysisInnerError to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentAnalysisInnerError.
- Returns
DocumentAnalysisInnerError
- Return type
-
class
azure.ai.formrecognizer.
DocumentElement
(**kwargs)[source]¶ A DocumentElement.
- Variables
content (str) – Text content of the word.
kind (str) – The kind of document element. Possible kinds are “word” or “selectionMark” which correspond to a
DocumentWord
orDocumentSelectionMark
, respectively.
-
class
azure.ai.formrecognizer.
DocumentEntity
(**kwargs)[source]¶ An object representing various categories of entities.
- Variables
category (str) – Entity type.
sub_category (str) – Entity sub type.
content (str) – Entity content.
bounding_regions (list[BoundingRegion]) – Bounding regions covering the entity.
spans (list[DocumentSpan]) – Location of the entity in the reading order concatenated content.
confidence (float) – Confidence of correctly extracting the entity.
-
class
azure.ai.formrecognizer.
DocumentField
(**kwargs)[source]¶ An object representing the content and location of a document field value.
- Variables
value_type (str) – The type of value found on DocumentField. Possible types include: “string”, “date”, “time”, “phoneNumber”, “float”, “integer”, “selectionMark”, “countryRegion”, “signature”, “list”, “dictionary”.
value (str, int, float,
date
,time
, dict[str,DocumentField
], or list[DocumentField
]) – The value for the recognized field. Its semantic data type is described by value_type. If the value is extracted from the document, but cannot be normalized to its type, then access the content property for a textual representation of the value.content (str) – The field’s content.
bounding_regions (list[BoundingRegion]) – Bounding regions covering the field.
spans (list[DocumentSpan]) – Location of the field in the reading order concatenated content.
confidence (float) – The confidence of correctly extracting the field.
-
class
azure.ai.formrecognizer.
DocumentKeyValueElement
(**kwargs)[source]¶ An object representing the field key or value in a key-value pair.
- Variables
content (str) – Concatenated content of the key-value element in reading order.
bounding_regions (list[BoundingRegion]) – Bounding regions covering the key-value element.
spans (list[DocumentSpan]) – Location of the key-value element in the reading order of the concatenated content.
-
classmethod
from_dict
(data: dict) → azure.ai.formrecognizer._models.DocumentKeyValueElement[source]¶ Converts a dict in the shape of a DocumentKeyValueElement to the model itself.
- Parameters
data (dict) – A dictionary in the shape of DocumentKeyValueElement.
- Returns
DocumentKeyValueElement
- Return type
-
class
azure.ai.formrecognizer.
DocumentKeyValuePair
(**kwargs)[source]¶ An object representing a document field with distinct field label (key) and field value (may be empty).
- Variables
key (DocumentKeyValueElement) – Field label of the key-value pair.
value (DocumentKeyValueElement) – Field value of the key-value pair.
confidence (float) – Confidence of correctly extracting the key-value pair.
-
class
azure.ai.formrecognizer.
DocumentLine
(**kwargs)[source]¶ A content line object representing the content found on a single line of the document.
- Variables
content (str) – Concatenated content of the contained elements in reading order.
spans (list[DocumentSpan]) – Location of the line in the reading order concatenated content.
-
class
azure.ai.formrecognizer.
DocumentModel
(**kwargs)[source]¶ Document model information. Includes the doc types that the model can analyze.
- Variables
model_id (str) – Unique model id.
description (str) – A description for the model.
created_on (datetime) – Date and time (UTC) when the model was created.
doc_types (dict[str, DocTypeInfo]) – Supported document types, including the fields for each document and their types.
-
class
azure.ai.formrecognizer.
DocumentModelAdministrationClient
(endpoint: str, credential: Union[AzureKeyCredential, TokenCredential], **kwargs: Any)[source]¶ DocumentModelAdministrationClient is the Form Recognizer interface to use for building and managing models.
It provides methods for building models, as well as methods for viewing and deleting models, viewing document model operations, accessing account information, copying models to another Form Recognizer resource, and composing a new model from a collection of existing models.
Note
DocumentModelAdministrationClient should be used with API versions 2021-09-30-preview and up. To use API versions <=v2.1, instantiate a FormTrainingClient.
- Parameters
endpoint (str) – Supported Cognitive Services endpoints (protocol and hostname, for example: https://westus2.api.cognitive.microsoft.com).
credential (
AzureKeyCredential
orTokenCredential
) – Credentials needed for the client to connect to Azure. This is an instance of AzureKeyCredential if using an API key or a token credential fromazure.identity
.
- Keyword Arguments
api_version (str or DocumentAnalysisApiVersion) – The API version of the service to use for requests. It defaults to the latest service version. Setting to an older version may result in reduced feature compatibility. To use API versions <=v2.1, instantiate a FormTrainingClient.
New in version 2021-09-30-preview: The DocumentModelAdministrationClient and its client methods.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentModelAdministrationClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_model_admin_client = DocumentModelAdministrationClient(endpoint, AzureKeyCredential(key))
"""DefaultAzureCredential will use the values from these environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET """ from azure.ai.formrecognizer import DocumentModelAdministrationClient from azure.identity import DefaultAzureCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] credential = DefaultAzureCredential() document_model_admin_client = DocumentModelAdministrationClient(endpoint, credential)
-
begin_build_model
(source: str, **kwargs: Any) → DocumentModelAdministrationLROPoller[DocumentModel][source]¶ Build a custom model.
The request must include a source parameter that is an externally accessible Azure storage blob container URI (preferably a Shared Access Signature URI). Models are built using documents that are of the following content type - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’, or ‘image/bmp’. Other types of content in the container is ignored.
- Parameters
source (str) – An Azure Storage blob container’s SAS URI. A container URI (without SAS) can be used if the container is public. For more information on setting up a training data set, see: https://aka.ms/azsdk/formrecognizer/buildtrainingset
- Keyword Arguments
model_id (str) – A unique ID for your model. If not specified, a model ID will be created for you.
description (str) – An optional description to add to the model.
prefix (str) – A case-sensitive prefix string to filter documents in the source path. For example, when using an Azure storage blob URI, use the prefix to restrict sub folders. prefix should end in ‘/’ to avoid cases where filenames share the same prefix.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an DocumentModelAdministrationLROPoller. Call result() on the poller object to return a
DocumentModel
.- Return type
- Raises
Example:
from azure.ai.formrecognizer import DocumentModelAdministrationClient from azure.core.credentials import AzureKeyCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] container_sas_url = os.environ["CONTAINER_SAS_URL"] document_model_admin_client = DocumentModelAdministrationClient(endpoint, AzureKeyCredential(key)) poller = document_model_admin_client.begin_build_model( container_sas_url, description="my model description" ) model = poller.result() print("Model ID: {}".format(model.model_id)) print("Description: {}".format(model.description)) print("Model created on: {}\n".format(model.created_on)) print("Doc types the model can recognize:") for name, doc_type in model.doc_types.items(): print("\nDoc Type: '{}' which has the following fields:".format(name)) for field_name, field in doc_type.field_schema.items(): print("Field: '{}' has type '{}' and confidence score {}".format( field_name, field["type"], doc_type.field_confidence[field_name] ))
-
begin_copy_model
(model_id: str, target: Dict, **kwargs: Any) → DocumentModelAdministrationLROPoller[DocumentModel][source]¶ Copy a model stored in this resource (the source) to the user specified target Form Recognizer resource.
This should be called with the source Form Recognizer resource (with the model that is intended to be copied). The target parameter should be supplied from the target resource’s output from calling the
get_copy_authorization()
method.- Parameters
model_id (str) – Model identifier of the model to copy to target resource.
target (dict) – The copy authorization generated from the target resource’s call to
get_copy_authorization()
.
- Keyword Arguments
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of a DocumentModelAdministrationLROPoller. Call result() on the poller object to return a
DocumentModel
.- Return type
- Raises
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentModelAdministrationClient source_endpoint = os.environ["AZURE_FORM_RECOGNIZER_SOURCE_ENDPOINT"] source_key = os.environ["AZURE_FORM_RECOGNIZER_SOURCE_KEY"] target_endpoint = os.environ["AZURE_FORM_RECOGNIZER_TARGET_ENDPOINT"] target_key = os.environ["AZURE_FORM_RECOGNIZER_TARGET_KEY"] source_model_id = os.getenv("AZURE_SOURCE_MODEL_ID", custom_model_id) target_client = DocumentModelAdministrationClient(endpoint=target_endpoint, credential=AzureKeyCredential(target_key)) target = target_client.get_copy_authorization( description="model copied from other resource" ) source_client = DocumentModelAdministrationClient(endpoint=source_endpoint, credential=AzureKeyCredential(source_key)) poller = source_client.begin_copy_model( model_id=source_model_id, target=target # output from target client's call to get_copy_authorization() ) copied_over_model = poller.result() print("Model ID: {}".format(model.model_id)) print("Description: {}".format(model.description)) print("Model created on: {}\n".format(model.created_on)) print("Doc types the model can recognize:") for name, doc_type in model.doc_types.items(): print("\nDoc Type: '{}' which has the following fields:".format(name)) for field_name, field in doc_type.field_schema.items(): print("Field: '{}' has type '{}' and confidence score {}".format( field_name, field["type"], doc_type.field_confidence[field_name] ))
-
begin_create_composed_model
(model_ids: List[str], **kwargs: Any) → DocumentModelAdministrationLROPoller[DocumentModel][source]¶ Creates a composed model from a collection of existing models.
A composed model allows multiple models to be called with a single model ID. When a document is submitted to be analyzed with a composed model ID, a classification step is first performed to route it to the correct custom model.
- Parameters
model_ids (list[str]) – List of model IDs to use in the composed model.
- Keyword Arguments
- Returns
An instance of an DocumentModelAdministrationLROPoller. Call result() on the poller object to return a
DocumentModel
.- Return type
- Raises
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentModelAdministrationClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] po_supplies = os.environ['PURCHASE_ORDER_OFFICE_SUPPLIES_SAS_URL'] po_equipment = os.environ['PURCHASE_ORDER_OFFICE_EQUIPMENT_SAS_URL'] po_furniture = os.environ['PURCHASE_ORDER_OFFICE_FURNITURE_SAS_URL'] po_cleaning_supplies = os.environ['PURCHASE_ORDER_OFFICE_CLEANING_SUPPLIES_SAS_URL'] document_model_admin_client = DocumentModelAdministrationClient(endpoint=endpoint, credential=AzureKeyCredential(key)) supplies_poller = document_model_admin_client.begin_build_model( po_supplies, description="Purchase order-Office supplies" ) equipment_poller = document_model_admin_client.begin_build_model( po_equipment, description="Purchase order-Office Equipment" ) furniture_poller = document_model_admin_client.begin_build_model( po_furniture, description="Purchase order-Furniture" ) cleaning_supplies_poller = document_model_admin_client.begin_build_model( po_cleaning_supplies, description="Purchase order-Cleaning Supplies" ) supplies_model = supplies_poller.result() equipment_model = equipment_poller.result() furniture_model = furniture_poller.result() cleaning_supplies_model = cleaning_supplies_poller.result() purchase_order_models = [ supplies_model.model_id, equipment_model.model_id, furniture_model.model_id, cleaning_supplies_model.model_id ] poller = document_model_admin_client.begin_create_composed_model( purchase_order_models, description="Office Supplies Composed Model" ) model = poller.result() print("Office Supplies Composed Model Info:") print("Model ID: {}".format(model.model_id)) print("Description: {}".format(model.description)) print("Model created on: {}\n".format(model.created_on)) print("Doc types the model can recognize:") for name, doc_type in model.doc_types.items(): print("\nDoc Type: '{}' which has the following fields:".format(name)) for field_name, field in doc_type.field_schema.items(): print("Field: '{}' has type '{}' and confidence score {}".format( field_name, field["type"], doc_type.field_confidence[field_name] ))
-
close
() → None[source]¶ Close the
DocumentModelAdministrationClient
session.
-
delete_model
(model_id: str, **kwargs: Any) → None[source]¶ Delete a custom model.
- Parameters
model_id (str) – Model identifier.
- Return type
- Raises
Example:
document_model_admin_client.delete_model(model_id=my_model.model_id) try: document_model_admin_client.get_model(model_id=my_model.model_id) except ResourceNotFoundError: print("Successfully deleted model with ID {}".format(my_model.model_id))
-
get_account_info
(**kwargs: Any) → AccountInfo[source]¶ Get information about the models under the Form Recognizer resource.
- Returns
Summary of models under the resource - model count and limit.
- Return type
- Raises
Example:
document_model_admin_client = DocumentModelAdministrationClient(endpoint=endpoint, credential=AzureKeyCredential(key)) account_info = document_model_admin_client.get_account_info() print("Our account has {} custom models, and we can have at most {} custom models\n".format( account_info.model_count, account_info.model_limit ))
Generate authorization for copying a custom model into the target Form Recognizer resource.
This should be called by the target resource (where the model will be copied to) and the output can be passed as the target parameter into
begin_copy_model()
.- Keyword Arguments
- Returns
A dictionary with values necessary for the copy authorization.
- Return type
- Raises
-
get_document_analysis_client
(**kwargs: Any) → azure.ai.formrecognizer._document_analysis_client.DocumentAnalysisClient[source]¶ Get an instance of a DocumentAnalysisClient from DocumentModelAdministrationClient.
- Return type
- Returns
A DocumentAnalysisClient
-
get_model
(model_id: str, **kwargs: Any) → DocumentModel[source]¶ Get a model by its ID.
- Parameters
model_id (str) – Model identifier.
- Returns
DocumentModel
- Return type
- Raises
Example:
my_model = document_model_admin_client.get_model(model_id=model.model_id) print("\nModel ID: {}".format(my_model.model_id)) print("Description: {}".format(my_model.description)) print("Model created on: {}".format(my_model.created_on))
-
get_operation
(operation_id: str, **kwargs: Any) → ModelOperation[source]¶ Get a document model operation by its ID.
Get a document model operation associated with the Form Recognizer resource. Note that operation information only persists for 24 hours. If the operation was successful, the document model can be accessed using the
get_model()
orlist_models()
APIs.- Parameters
operation_id (str) – The operation ID.
- Returns
ModelOperation
- Return type
- Raises
Example:
# Get an operation by ID print("\nGetting operation info by ID: {}".format(operations[0].operation_id)) operation_info = document_model_admin_client.get_operation(operations[0].operation_id) if operation_info.status == "succeeded": print("My {} operation is completed.".format(operation_info.kind)) result = operation_info.result print("Model ID: {}".format(result.model_id)) elif operation_info.status == "failed": print("My {} operation failed.".format(operation_info.kind)) error = operation_info.error print("{}: {}".format(error.code, error.message)) else: print("My operation status is {}".format(operation_info.status))
-
list_models
(**kwargs: Any) → ItemPaged[DocumentModelInfo][source]¶ List information for each model, including its model ID, description, and when it was created.
- Returns
Pageable of DocumentModelInfo.
- Return type
- Raises
Example:
models = document_model_admin_client.list_models() print("We have the following 'ready' models with IDs and descriptions:") for model in models: print("{} | {}".format(model.model_id, model.description))
-
list_operations
(**kwargs: Any) → ItemPaged[ModelOperationInfo][source]¶ List information for each document model operation.
Lists all document model operations associated with the Form Recognizer resource. Note that operation information only persists for 24 hours. If the operation was successful, the document model can be accessed using the
get_model()
orlist_models()
APIs.- Returns
A pageable of ModelOperationInfo.
- Return type
- Raises
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentModelAdministrationClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_model_admin_client = DocumentModelAdministrationClient(endpoint=endpoint, credential=AzureKeyCredential(key)) operations = list(document_model_admin_client.list_operations()) print("The following document model operations exist under my resource:") for operation in operations: print("\nOperation ID: {}".format(operation.operation_id)) print("Operation kind: {}".format(operation.kind)) print("Operation status: {}".format(operation.status)) print("Operation percent completed: {}".format(operation.percent_completed)) print("Operation created on: {}".format(operation.created_on)) print("Operation last updated on: {}".format(operation.last_updated_on)) print("Resource location of successful operation: {}".format(operation.resource_location))
-
class
azure.ai.formrecognizer.
DocumentModelAdministrationLROPoller
(client: Any, initial_response: Any, deserialization_callback: Callable, polling_method: PollingMethod[PollingReturnType])[source]¶ Custom poller for model build operations. Call result() on the poller to return a
DocumentModel
.New in version 2021-09-30-preview: The DocumentModelAdministrationLROPoller poller object
-
add_done_callback
(func: Callable) → None¶ Add callback function to be run once the long running operation has completed - regardless of the status of the operation.
- Parameters
func (callable) – Callback function that takes at least one argument, a completed LongRunningOperation.
-
continuation_token
() → str¶ Return a continuation token that allows to restart the poller later.
- Returns
An opaque continuation token
- Return type
-
done
() → bool¶ Check status of the long running operation.
- Returns
‘True’ if the process has completed, else ‘False’.
- Return type
-
classmethod
from_continuation_token
(polling_method: azure.core.polling._poller.PollingMethod[PollingReturnType], continuation_token: str, **kwargs: Any) → azure.ai.formrecognizer._polling.DocumentModelAdministrationLROPoller[source]¶
-
polling_method
() → azure.core.polling._poller.PollingMethod[PollingReturnType]¶ Return the polling method associated to this poller.
-
remove_done_callback
(func: Callable) → None¶ Remove a callback from the long running operation.
- Parameters
func (callable) – The function to be removed from the callbacks.
- Raises
ValueError – if the long running operation has already completed.
-
result
(timeout: Optional[int] = None) → PollingReturnType¶ Return the result of the long running operation, or the result available after the specified timeout.
- Returns
The deserialized resource of the long running operation, if one is available.
- Raises
HttpResponseError – Server problem with the query.
-
wait
(timeout: Optional[int] = None) → None¶ Wait on the long running operation for a specified length of time. You can check if this call as ended with timeout with the “done()” method.
- Parameters
timeout (int) – Period of time to wait for the long running operation to complete (in seconds).
- Raises
HttpResponseError – Server problem with the query.
-
property
last_updated_on
¶ Date and time (UTC) when the operation was last updated.
- Return type
-
property
operation_kind
¶ The model operation kind. For example, ‘documentModelBuild’, ‘documentModelCompose’, ‘documentModelCopyTo’.
- Return type
-
-
class
azure.ai.formrecognizer.
DocumentModelInfo
(**kwargs)[source]¶ Document model information including the model ID, its description, and when the model was created.
- Variables
model_id (str) – Unique model id.
description (str) – A description for the model.
created_on (datetime) – Date and time (UTC) when the model was created.
-
class
azure.ai.formrecognizer.
DocumentPage
(**kwargs)[source]¶ Content and layout elements extracted from a page of the input.
- Variables
page_number (int) – 1-based page number in the input document.
angle (float) – The general orientation of the content in clockwise direction, measured in degrees between (-180, 180].
width (float) – The width of the image/PDF in pixels/inches, respectively.
height (float) – The height of the image/PDF in pixels/inches, respectively.
unit (str) – The unit used by the width, height, and boundingBox properties. For images, the unit is “pixel”. For PDF, the unit is “inch”. Possible values include: “pixel”, “inch”.
spans (list[DocumentSpan]) – Location of the page in the reading order concatenated content.
words (list[DocumentWord]) – Extracted words from the page.
selection_marks (list[DocumentSelectionMark]) – Extracted selection marks from the page.
lines (list[DocumentLine]) – Extracted lines from the page, potentially containing both textual and visual elements.
-
class
azure.ai.formrecognizer.
DocumentSelectionMark
(**kwargs)[source]¶ A selection mark object representing check boxes, radio buttons, and other elements indicating a selection.
- Variables
state (str) – State of the selection mark. Possible values include: “selected”, “unselected”.
content (str) – The text content - not returned for DocumentSelectionMark.
bounding_box (list[Point]) – Bounding box of the selection mark.
span (DocumentSpan) – Location of the selection mark in the reading order concatenated content.
confidence (float) – Confidence of correctly extracting the selection mark.
kind (str) – For DocumentSelectionMark, this is “selectionMark”.
-
class
azure.ai.formrecognizer.
DocumentSpan
(**kwargs)[source]¶ Contiguous region of the content of the property, specified as an offset and length.
- Variables
-
class
azure.ai.formrecognizer.
DocumentStyle
(**kwargs)[source]¶ An object representing observed text styles.
- Variables
is_handwritten (bool) – Is content handwritten?.
spans (list[DocumentSpan]) – Location of the text elements in the concatenated content the style applies to.
confidence (float) – Confidence of correctly identifying the style.
-
class
azure.ai.formrecognizer.
DocumentTable
(**kwargs)[source]¶ A table object consisting table cells arranged in a rectangular layout.
- Variables
row_count (int) – Number of rows in the table.
column_count (int) – Number of columns in the table.
cells (list[DocumentTableCell]) – Cells contained within the table.
bounding_regions (list[BoundingRegion]) – Bounding regions covering the table.
spans (list[DocumentSpan]) – Location of the table in the reading order concatenated content.
-
class
azure.ai.formrecognizer.
DocumentTableCell
(**kwargs)[source]¶ An object representing the location and content of a table cell.
- Variables
kind (str) – Table cell kind. Possible values include: “content”, “rowHeader”, “columnHeader”, “stubHead”, “description”. Default value: “content”.
row_index (int) – Row index of the cell.
column_index (int) – Column index of the cell.
row_span (int) – Number of rows spanned by this cell.
column_span (int) – Number of columns spanned by this cell.
content (str) – Concatenated content of the table cell in reading order.
bounding_regions (list[BoundingRegion]) – Bounding regions covering the table cell.
spans (list[DocumentSpan]) – Location of the table cell in the reading order concatenated content.
-
class
azure.ai.formrecognizer.
DocumentWord
(**kwargs)[source]¶ A word object consisting of a contiguous sequence of characters. For non-space delimited languages, such as Chinese, Japanese, and Korean, each character is represented as its own word.
- Variables
-
class
azure.ai.formrecognizer.
FieldData
(**kwargs)[source]¶ Contains the data for the form field. This includes the text, location of the text on the form, and a collection of the elements that make up the text.
- Variables
page_number (int) – The 1-based number of the page in which this content is present.
text (str) – The string representation of the field or value.
bounding_box (list[Point]) – A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
field_elements (list[Union[FormElement, FormWord, FormLine, FormSelectionMark]]) – When include_field_elements is set to true, a list of elements constituting this field or value is returned. The list constitutes of elements such as lines, words, and selection marks.
New in version v2.1: FormSelectionMark is added to the types returned in the list of field_elements, support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
FieldValueType
(value)[source]¶ Semantic data type of the field value.
New in version v2.1: The selectionMark and countryRegion values
-
COUNTRY_REGION
= 'countryRegion'¶
-
DATE
= 'date'¶
-
DICTIONARY
= 'dictionary'¶
-
FLOAT
= 'float'¶
-
INTEGER
= 'integer'¶
-
LIST
= 'list'¶
-
PHONE_NUMBER
= 'phoneNumber'¶
-
SELECTION_MARK
= 'selectionMark'¶
-
STRING
= 'string'¶
-
TIME
= 'time'¶
-
-
class
azure.ai.formrecognizer.
FormContentType
(value)[source]¶ Content type for upload.
New in version v2.1: Support for image/bmp
-
APPLICATION_PDF
= 'application/pdf'¶
-
IMAGE_BMP
= 'image/bmp'¶
-
IMAGE_JPEG
= 'image/jpeg'¶
-
IMAGE_PNG
= 'image/png'¶
-
IMAGE_TIFF
= 'image/tiff'¶
-
-
class
azure.ai.formrecognizer.
FormElement
(**kwargs)[source]¶ Base type which includes properties for a form element.
- Variables
text (str) – The text content of the element.
bounding_box (list[Point]) – A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
page_number (int) – The 1-based number of the page in which this content is present.
kind (str) – The kind of form element. Possible kinds are “word”, “line”, or “selectionMark” which correspond to a
FormWord
FormLine
, orFormSelectionMark
, respectively.
New in version v2.1: Support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
FormField
(**kwargs)[source]¶ Represents a field recognized in an input form.
- Variables
value_type (str) – The type of value found on FormField. Described in
FieldValueType
, possible types include: ‘string’, ‘date’, ‘time’, ‘phoneNumber’, ‘float’, ‘integer’, ‘dictionary’, ‘list’, ‘selectionMark’, or ‘countryRegion’.label_data (FieldData) – Contains the text, bounding box, and field elements for the field label. Note that this is not returned for forms analyzed by models trained with labels.
value_data (FieldData) – Contains the text, bounding box, and field elements for the field value.
name (str) – The unique name of the field or the training-time label if analyzed from a custom model that was trained with labels.
value (str, int, float,
date
,time
, dict[str,FormField
], or list[FormField
]) – The value for the recognized field. Its semantic data type is described by value_type. If the value is extracted from the form, but cannot be normalized to its type, then access the value_data.text property for a textual representation of the value.confidence (float) – Measures the degree of certainty of the recognition result. Value is between [0.0, 1.0].
New in version v2.1: Support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
FormLine
(**kwargs)[source]¶ An object representing an extracted line of text.
- Variables
text (str) – The text content of the line.
bounding_box (list[Point]) – A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
words (list[FormWord]) – A list of the words that make up the line.
page_number (int) – The 1-based number of the page in which this content is present.
kind (str) – For FormLine, this is “line”.
appearance (Appearance) – An object representing the appearance of the line.
New in version v2.1: appearance property, support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
FormPage
(**kwargs)[source]¶ Represents a page recognized from the input document. Contains lines, words, selection marks, tables and page metadata.
- Variables
page_number (int) – The 1-based number of the page in which this content is present.
text_angle (float) – The general orientation of the text in clockwise direction, measured in degrees between (-180, 180].
width (float) – The width of the image/PDF in pixels/inches, respectively.
height (float) – The height of the image/PDF in pixels/inches, respectively.
unit (str) – The
LengthUnit
used by the width, height, and bounding box properties. For images, the unit is “pixel”. For PDF, the unit is “inch”.tables (list[FormTable]) – A list of extracted tables contained in a page.
lines (list[FormLine]) – When include_field_elements is set to true, a list of recognized text lines is returned. For calls to recognize content, this list is always populated. The maximum number of lines returned is 300 per page. The lines are sorted top to bottom, left to right, although in certain cases proximity is treated with higher priority. As the sorting order depends on the detected text, it may change across images and OCR version updates. Thus, business logic should be built upon the actual line location instead of order. The reading order of lines can be specified by the reading_order keyword argument (Note: reading_order only supported in begin_recognize_content and begin_recognize_content_from_url).
selection_marks (list[FormSelectionMark]) – List of selection marks extracted from the page.
New in version v2.1: selection_marks property, support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
FormPageRange
(first_page_number, last_page_number)[source]¶ The 1-based page range of the form.
- Variables
first_page_number (int) – The first page number of the form.
last_page_number (int) – The last page number of the form.
New in version v2.1: Support for to_dict and from_dict methods
Create new instance of FormPageRange(first_page_number, last_page_number)
-
count
(value) → integer – return number of occurrences of value¶
-
classmethod
from_dict
(data: dict) → azure.ai.formrecognizer._models.FormPageRange[source]¶ Converts a dict in the shape of a FormPageRange to the model itself.
- Parameters
data (dict) – A dictionary in the shape of FormPageRange.
- Returns
FormPageRange
- Return type
-
index
(value[, start[, stop]]) → integer – return first index of value.¶ Raises ValueError if the value is not present.
-
property
first_page_number
¶ Alias for field number 0
-
property
last_page_number
¶ Alias for field number 1
-
class
azure.ai.formrecognizer.
FormRecognizerApiVersion
(value)[source]¶ Form Recognizer API versions supported by FormRecognizerClient and FormTrainingClient.
-
V2_0
= '2.0'¶
-
V2_1
= '2.1'¶ This is the default version
-
-
class
azure.ai.formrecognizer.
FormRecognizerClient
(endpoint: str, credential: Union[AzureKeyCredential, TokenCredential], **kwargs: Any)[source]¶ FormRecognizerClient extracts information from forms and images into structured data. It is the interface to use for analyzing with prebuilt models (receipts, business cards, invoices, identity documents), recognizing content/layout from forms, and analyzing custom forms from trained models. It provides different methods based on inputs from a URL and inputs from a stream.
Note
FormRecognizerClient should be used with API versions <=v2.1. To use API versions 2021-09-30-preview and up, instantiate a DocumentAnalysisClient.
- Parameters
endpoint (str) – Supported Cognitive Services endpoints (protocol and hostname, for example: https://westus2.api.cognitive.microsoft.com).
credential (
AzureKeyCredential
orTokenCredential
) – Credentials needed for the client to connect to Azure. This is an instance of AzureKeyCredential if using an API key or a token credential fromazure.identity
.
- Keyword Arguments
api_version (str or FormRecognizerApiVersion) – The API version of the service to use for requests. It defaults to API version v2.1. Setting to an older version may result in reduced feature compatibility. To use the latest supported API version and features, instantiate a DocumentAnalysisClient instead.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
"""DefaultAzureCredential will use the values from these environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET """ from azure.ai.formrecognizer import FormRecognizerClient from azure.identity import DefaultAzureCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] credential = DefaultAzureCredential() form_recognizer_client = FormRecognizerClient(endpoint, credential)
-
begin_recognize_business_cards
(business_card: Union[bytes, IO[bytes]], **kwargs: Any) → LROPoller[List[RecognizedForm]][source]¶ Extract field text and semantic values from a given business card. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
See fields found on a business card here: https://aka.ms/formrecognizer/businesscardfields
- Parameters
business_card (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
locale (str) – Locale of the business card. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_business_cards client method
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) with open(path_to_sample_forms, "rb") as f: poller = form_recognizer_client.begin_recognize_business_cards(business_card=f, locale="en-US") business_cards = poller.result() for idx, business_card in enumerate(business_cards): print("--------Recognizing business card #{}--------".format(idx+1)) contact_names = business_card.fields.get("ContactNames") if contact_names: for contact_name in contact_names.value: print("Contact First Name: {} has confidence: {}".format( contact_name.value["FirstName"].value, contact_name.value["FirstName"].confidence )) print("Contact Last Name: {} has confidence: {}".format( contact_name.value["LastName"].value, contact_name.value["LastName"].confidence )) company_names = business_card.fields.get("CompanyNames") if company_names: for company_name in company_names.value: print("Company Name: {} has confidence: {}".format(company_name.value, company_name.confidence)) departments = business_card.fields.get("Departments") if departments: for department in departments.value: print("Department: {} has confidence: {}".format(department.value, department.confidence)) job_titles = business_card.fields.get("JobTitles") if job_titles: for job_title in job_titles.value: print("Job Title: {} has confidence: {}".format(job_title.value, job_title.confidence)) emails = business_card.fields.get("Emails") if emails: for email in emails.value: print("Email: {} has confidence: {}".format(email.value, email.confidence)) websites = business_card.fields.get("Websites") if websites: for website in websites.value: print("Website: {} has confidence: {}".format(website.value, website.confidence)) addresses = business_card.fields.get("Addresses") if addresses: for address in addresses.value: print("Address: {} has confidence: {}".format(address.value, address.confidence)) mobile_phones = business_card.fields.get("MobilePhones") if mobile_phones: for phone in mobile_phones.value: print("Mobile phone number: {} has confidence: {}".format(phone.value, phone.confidence)) faxes = business_card.fields.get("Faxes") if faxes: for fax in faxes.value: print("Fax number: {} has confidence: {}".format(fax.value, fax.confidence)) work_phones = business_card.fields.get("WorkPhones") if work_phones: for work_phone in work_phones.value: print("Work phone number: {} has confidence: {}".format(work_phone.value, work_phone.confidence)) other_phones = business_card.fields.get("OtherPhones") if other_phones: for other_phone in other_phones.value: print("Other phone number: {} has confidence: {}".format(other_phone.value, other_phone.confidence))
-
begin_recognize_business_cards_from_url
(business_card_url: str, **kwargs: Any) → LROPoller[List[RecognizedForm]][source]¶ Extract field text and semantic values from a given business card. The input document must be the location (URL) of the card to be analyzed.
See fields found on a business card here: https://aka.ms/formrecognizer/businesscardfields
- Parameters
business_card_url (str) – The URL of the business card to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
locale (str) – Locale of the business card. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_business_cards_from_url client method
-
begin_recognize_content
(form: Union[bytes, IO[bytes]], **kwargs: Any) → LROPoller[List[FormPage]][source]¶ Extract text and content/layout information from a given document. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
- Parameters
form (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
language (str) – The BCP-47 language code of the text in the document. See supported language codes here: https://docs.microsoft.com/azure/cognitive-services/form-recognizer/language-support. Content supports auto language identification and multilanguage documents, so only provide a language code if you would like to force the documented to be processed as that specific language.
reading_order (str) – Reading order algorithm to sort the text lines returned. Supported reading orders include: basic (default), natural. Set ‘basic’ to sort lines left to right and top to bottom, although in some cases proximity is treated with higher priority. Set ‘natural’ to sort lines by using positional information to keep nearby lines together.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
FormPage
].- Return type
- Raises
New in version v2.1: The pages, language and reading_order keyword arguments and support for image/bmp content
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient(endpoint=endpoint, credential=AzureKeyCredential(key)) with open(path_to_sample_forms, "rb") as f: poller = form_recognizer_client.begin_recognize_content(form=f) form_pages = poller.result() for idx, content in enumerate(form_pages): print("----Recognizing content from page #{}----".format(idx+1)) print("Page has width: {} and height: {}, measured with unit: {}".format( content.width, content.height, content.unit )) for table_idx, table in enumerate(content.tables): print("Table # {} has {} rows and {} columns".format(table_idx, table.row_count, table.column_count)) print("Table # {} location on page: {}".format(table_idx, format_bounding_box(table.bounding_box))) for cell in table.cells: print("...Cell[{}][{}] has text '{}' within bounding box '{}'".format( cell.row_index, cell.column_index, cell.text, format_bounding_box(cell.bounding_box) )) for line_idx, line in enumerate(content.lines): print("Line # {} has word count '{}' and text '{}' within bounding box '{}'".format( line_idx, len(line.words), line.text, format_bounding_box(line.bounding_box) )) if line.appearance: if line.appearance.style_name == "handwriting" and line.appearance.style_confidence > 0.8: print("Text line '{}' is handwritten and might be a signature.".format(line.text)) for word in line.words: print("...Word '{}' has a confidence of {}".format(word.text, word.confidence)) for selection_mark in content.selection_marks: print("Selection mark is '{}' within bounding box '{}' and has a confidence of {}".format( selection_mark.state, format_bounding_box(selection_mark.bounding_box), selection_mark.confidence )) print("----------------------------------------")
-
begin_recognize_content_from_url
(form_url: str, **kwargs: Any) → LROPoller[List[FormPage]][source]¶ Extract text and layout information from a given document. The input document must be the location (URL) of the document to be analyzed.
- Parameters
form_url (str) – The URL of the form to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
language (str) – The BCP-47 language code of the text in the document. See supported language codes here: https://docs.microsoft.com/azure/cognitive-services/form-recognizer/language-support. Content supports auto language identification and multilanguage documents, so only provide a language code if you would like to force the documented to be processed as that specific language.
reading_order (str) – Reading order algorithm to sort the text lines returned. Supported reading orders include: basic (default), natural. Set ‘basic’ to sort lines left to right and top to bottom, although in some cases proximity is treated with higher priority. Set ‘natural’ to sort lines by using positional information to keep nearby lines together.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
FormPage
].- Return type
- Raises
New in version v2.1: The pages, language and reading_order keyword arguments and support for image/bmp content
-
begin_recognize_custom_forms
(model_id: str, form: Union[bytes, IO[bytes]], **kwargs: Any) → LROPoller[List[RecognizedForm]][source]¶ Analyze a custom form with a model trained with or without labels. The form to analyze should be of the same type as the forms that were used to train the model. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’, or ‘image/bmp’.
- Parameters
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] model_id = os.getenv("CUSTOM_TRAINED_MODEL_ID", custom_model_id) form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) # Make sure your form's type is included in the list of form types the custom model can recognize with open(path_to_sample_forms, "rb") as f: poller = form_recognizer_client.begin_recognize_custom_forms( model_id=model_id, form=f, include_field_elements=True ) forms = poller.result() for idx, form in enumerate(forms): print("--------Recognizing Form #{}--------".format(idx+1)) print("Form has type {}".format(form.form_type)) print("Form has form type confidence {}".format(form.form_type_confidence)) print("Form was analyzed with model with ID {}".format(form.model_id)) for name, field in form.fields.items(): # each field is of type FormField # label_data is populated if you are using a model trained without labels, # since the service needs to make predictions for labels if not explicitly given to it. if field.label_data: print("...Field '{}' has label '{}' with a confidence score of {}".format( name, field.label_data.text, field.confidence )) print("...Label '{}' has value '{}' with a confidence score of {}".format( field.label_data.text if field.label_data else name, field.value, field.confidence )) # iterate over tables, lines, and selection marks on each page for page in form.pages: for i, table in enumerate(page.tables): print("\nTable {} on page {}".format(i+1, table.page_number)) for cell in table.cells: print("...Cell[{}][{}] has text '{}' with confidence {}".format( cell.row_index, cell.column_index, cell.text, cell.confidence )) print("\nLines found on page {}".format(page.page_number)) for line in page.lines: print("...Line '{}' is made up of the following words: ".format(line.text)) for word in line.words: print("......Word '{}' has a confidence of {}".format( word.text, word.confidence )) if page.selection_marks: print("\nSelection marks found on page {}".format(page.page_number)) for selection_mark in page.selection_marks: print("......Selection mark is '{}' and has a confidence of {}".format( selection_mark.state, selection_mark.confidence )) print("-----------------------------------")
-
begin_recognize_custom_forms_from_url
(model_id: str, form_url: str, **kwargs: Any) → LROPoller[List[RecognizedForm]][source]¶ Analyze a custom form with a model trained with or without labels. The form to analyze should be of the same type as the forms that were used to train the model. The input document must be the location (URL) of the document to be analyzed.
- Parameters
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
-
begin_recognize_identity_documents
(identity_document: Union[bytes, IO[bytes]], **kwargs: Any) → LROPoller[List[RecognizedForm]][source]¶ Extract field text and semantic values from a given identity document. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
See fields found on an identity document here: https://aka.ms/formrecognizer/iddocumentfields
- Parameters
identity_document (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.continuation_token (str) – A continuation token to restart a poller from a saved state.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_identity_documents client method
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) with open(path_to_sample_forms, "rb") as f: poller = form_recognizer_client.begin_recognize_identity_documents(identity_document=f) id_documents = poller.result() for idx, id_document in enumerate(id_documents): print("--------Recognizing ID document #{}--------".format(idx+1)) first_name = id_document.fields.get("FirstName") if first_name: print("First Name: {} has confidence: {}".format(first_name.value, first_name.confidence)) last_name = id_document.fields.get("LastName") if last_name: print("Last Name: {} has confidence: {}".format(last_name.value, last_name.confidence)) document_number = id_document.fields.get("DocumentNumber") if document_number: print("Document Number: {} has confidence: {}".format(document_number.value, document_number.confidence)) dob = id_document.fields.get("DateOfBirth") if dob: print("Date of Birth: {} has confidence: {}".format(dob.value, dob.confidence)) doe = id_document.fields.get("DateOfExpiration") if doe: print("Date of Expiration: {} has confidence: {}".format(doe.value, doe.confidence)) sex = id_document.fields.get("Sex") if sex: print("Sex: {} has confidence: {}".format(sex.value, sex.confidence)) address = id_document.fields.get("Address") if address: print("Address: {} has confidence: {}".format(address.value, address.confidence)) country_region = id_document.fields.get("CountryRegion") if country_region: print("Country/Region: {} has confidence: {}".format(country_region.value, country_region.confidence)) region = id_document.fields.get("Region") if region: print("Region: {} has confidence: {}".format(region.value, region.confidence))
-
begin_recognize_identity_documents_from_url
(identity_document_url: str, **kwargs: Any) → LROPoller[List[RecognizedForm]][source]¶ Extract field text and semantic values from a given identity document. The input document must be the location (URL) of the identity document to be analyzed.
See fields found on an identity document here: https://aka.ms/formrecognizer/iddocumentfields
- Parameters
identity_document_url (str) – The URL of the identity document to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
continuation_token (str) – A continuation token to restart a poller from a saved state.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_identity_documents_from_url client method
-
begin_recognize_invoices
(invoice: Union[bytes, IO[bytes]], **kwargs: Any) → LROPoller[List[RecognizedForm]][source]¶ Extract field text and semantic values from a given invoice. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
See fields found on a invoice here: https://aka.ms/formrecognizer/invoicefields
- Parameters
invoice (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
locale (str) – Locale of the invoice. Supported locales include: en-US
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_invoices client method
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) with open(path_to_sample_forms, "rb") as f: poller = form_recognizer_client.begin_recognize_invoices(invoice=f, locale="en-US") invoices = poller.result() for idx, invoice in enumerate(invoices): print("--------Recognizing invoice #{}--------".format(idx+1)) vendor_name = invoice.fields.get("VendorName") if vendor_name: print("Vendor Name: {} has confidence: {}".format(vendor_name.value, vendor_name.confidence)) vendor_address = invoice.fields.get("VendorAddress") if vendor_address: print("Vendor Address: {} has confidence: {}".format(vendor_address.value, vendor_address.confidence)) vendor_address_recipient = invoice.fields.get("VendorAddressRecipient") if vendor_address_recipient: print("Vendor Address Recipient: {} has confidence: {}".format(vendor_address_recipient.value, vendor_address_recipient.confidence)) customer_name = invoice.fields.get("CustomerName") if customer_name: print("Customer Name: {} has confidence: {}".format(customer_name.value, customer_name.confidence)) customer_id = invoice.fields.get("CustomerId") if customer_id: print("Customer Id: {} has confidence: {}".format(customer_id.value, customer_id.confidence)) customer_address = invoice.fields.get("CustomerAddress") if customer_address: print("Customer Address: {} has confidence: {}".format(customer_address.value, customer_address.confidence)) customer_address_recipient = invoice.fields.get("CustomerAddressRecipient") if customer_address_recipient: print("Customer Address Recipient: {} has confidence: {}".format(customer_address_recipient.value, customer_address_recipient.confidence)) invoice_id = invoice.fields.get("InvoiceId") if invoice_id: print("Invoice Id: {} has confidence: {}".format(invoice_id.value, invoice_id.confidence)) invoice_date = invoice.fields.get("InvoiceDate") if invoice_date: print("Invoice Date: {} has confidence: {}".format(invoice_date.value, invoice_date.confidence)) invoice_total = invoice.fields.get("InvoiceTotal") if invoice_total: print("Invoice Total: {} has confidence: {}".format(invoice_total.value, invoice_total.confidence)) due_date = invoice.fields.get("DueDate") if due_date: print("Due Date: {} has confidence: {}".format(due_date.value, due_date.confidence)) purchase_order = invoice.fields.get("PurchaseOrder") if purchase_order: print("Purchase Order: {} has confidence: {}".format(purchase_order.value, purchase_order.confidence)) billing_address = invoice.fields.get("BillingAddress") if billing_address: print("Billing Address: {} has confidence: {}".format(billing_address.value, billing_address.confidence)) billing_address_recipient = invoice.fields.get("BillingAddressRecipient") if billing_address_recipient: print("Billing Address Recipient: {} has confidence: {}".format(billing_address_recipient.value, billing_address_recipient.confidence)) shipping_address = invoice.fields.get("ShippingAddress") if shipping_address: print("Shipping Address: {} has confidence: {}".format(shipping_address.value, shipping_address.confidence)) shipping_address_recipient = invoice.fields.get("ShippingAddressRecipient") if shipping_address_recipient: print("Shipping Address Recipient: {} has confidence: {}".format(shipping_address_recipient.value, shipping_address_recipient.confidence)) print("Invoice items:") for idx, item in enumerate(invoice.fields.get("Items").value): print("...Item #{}".format(idx+1)) item_description = item.value.get("Description") if item_description: print("......Description: {} has confidence: {}".format(item_description.value, item_description.confidence)) item_quantity = item.value.get("Quantity") if item_quantity: print("......Quantity: {} has confidence: {}".format(item_quantity.value, item_quantity.confidence)) unit = item.value.get("Unit") if unit: print("......Unit: {} has confidence: {}".format(unit.value, unit.confidence)) unit_price = item.value.get("UnitPrice") if unit_price: print("......Unit Price: {} has confidence: {}".format(unit_price.value, unit_price.confidence)) product_code = item.value.get("ProductCode") if product_code: print("......Product Code: {} has confidence: {}".format(product_code.value, product_code.confidence)) item_date = item.value.get("Date") if item_date: print("......Date: {} has confidence: {}".format(item_date.value, item_date.confidence)) tax = item.value.get("Tax") if tax: print("......Tax: {} has confidence: {}".format(tax.value, tax.confidence)) amount = item.value.get("Amount") if amount: print("......Amount: {} has confidence: {}".format(amount.value, amount.confidence)) subtotal = invoice.fields.get("SubTotal") if subtotal: print("Subtotal: {} has confidence: {}".format(subtotal.value, subtotal.confidence)) total_tax = invoice.fields.get("TotalTax") if total_tax: print("Total Tax: {} has confidence: {}".format(total_tax.value, total_tax.confidence)) previous_unpaid_balance = invoice.fields.get("PreviousUnpaidBalance") if previous_unpaid_balance: print("Previous Unpaid Balance: {} has confidence: {}".format(previous_unpaid_balance.value, previous_unpaid_balance.confidence)) amount_due = invoice.fields.get("AmountDue") if amount_due: print("Amount Due: {} has confidence: {}".format(amount_due.value, amount_due.confidence)) service_start_date = invoice.fields.get("ServiceStartDate") if service_start_date: print("Service Start Date: {} has confidence: {}".format(service_start_date.value, service_start_date.confidence)) service_end_date = invoice.fields.get("ServiceEndDate") if service_end_date: print("Service End Date: {} has confidence: {}".format(service_end_date.value, service_end_date.confidence)) service_address = invoice.fields.get("ServiceAddress") if service_address: print("Service Address: {} has confidence: {}".format(service_address.value, service_address.confidence)) service_address_recipient = invoice.fields.get("ServiceAddressRecipient") if service_address_recipient: print("Service Address Recipient: {} has confidence: {}".format(service_address_recipient.value, service_address_recipient.confidence)) remittance_address = invoice.fields.get("RemittanceAddress") if remittance_address: print("Remittance Address: {} has confidence: {}".format(remittance_address.value, remittance_address.confidence)) remittance_address_recipient = invoice.fields.get("RemittanceAddressRecipient") if remittance_address_recipient: print("Remittance Address Recipient: {} has confidence: {}".format(remittance_address_recipient.value, remittance_address_recipient.confidence))
-
begin_recognize_invoices_from_url
(invoice_url: str, **kwargs: Any) → LROPoller[List[RecognizedForm]][source]¶ Extract field text and semantic values from a given invoice. The input document must be the location (URL) of the invoice to be analyzed.
See fields found on a invoice card here: https://aka.ms/formrecognizer/invoicefields
- Parameters
invoice_url (str) – The URL of the invoice to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
locale (str) – Locale of the invoice. Supported locales include: en-US
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_invoices_from_url client method
-
begin_recognize_receipts
(receipt: Union[bytes, IO[bytes]], **kwargs: Any) → LROPoller[List[RecognizedForm]][source]¶ Extract field text and semantic values from a given sales receipt. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
See fields found on a receipt here: https://aka.ms/formrecognizer/receiptfields
- Parameters
receipt (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.continuation_token (str) – A continuation token to restart a poller from a saved state.
locale (str) – Locale of the receipt. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The locale and pages keyword arguments and support for image/bmp content
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) with open(path_to_sample_forms, "rb") as f: poller = form_recognizer_client.begin_recognize_receipts(receipt=f, locale="en-US") receipts = poller.result() for idx, receipt in enumerate(receipts): print("--------Recognizing receipt #{}--------".format(idx+1)) receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {} has confidence: {}".format(receipt_type.value, receipt_type.confidence)) merchant_name = receipt.fields.get("MerchantName") if merchant_name: print("Merchant Name: {} has confidence: {}".format(merchant_name.value, merchant_name.confidence)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {} has confidence: {}".format(transaction_date.value, transaction_date.confidence)) if receipt.fields.get("Items"): print("Receipt items:") for idx, item in enumerate(receipt.fields.get("Items").value): print("...Item #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("......Item Name: {} has confidence: {}".format(item_name.value, item_name.confidence)) item_quantity = item.value.get("Quantity") if item_quantity: print("......Item Quantity: {} has confidence: {}".format(item_quantity.value, item_quantity.confidence)) item_price = item.value.get("Price") if item_price: print("......Individual Item Price: {} has confidence: {}".format(item_price.value, item_price.confidence)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("......Total Item Price: {} has confidence: {}".format(item_total_price.value, item_total_price.confidence)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} has confidence: {}".format(subtotal.value, subtotal.confidence)) tax = receipt.fields.get("Tax") if tax: print("Tax: {} has confidence: {}".format(tax.value, tax.confidence)) tip = receipt.fields.get("Tip") if tip: print("Tip: {} has confidence: {}".format(tip.value, tip.confidence)) total = receipt.fields.get("Total") if total: print("Total: {} has confidence: {}".format(total.value, total.confidence)) print("--------------------------------------")
-
begin_recognize_receipts_from_url
(receipt_url: str, **kwargs: Any) → LROPoller[List[RecognizedForm]][source]¶ Extract field text and semantic values from a given sales receipt. The input document must be the location (URL) of the receipt to be analyzed.
See fields found on a receipt here: https://aka.ms/formrecognizer/receiptfields
- Parameters
receipt_url (str) – The URL of the receipt to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
continuation_token (str) – A continuation token to restart a poller from a saved state.
locale (str) – Locale of the receipt. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The locale and pages keyword arguments and support for image/bmp content
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) url = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/main/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png" poller = form_recognizer_client.begin_recognize_receipts_from_url(receipt_url=url) receipts = poller.result() for idx, receipt in enumerate(receipts): print("--------Recognizing receipt #{}--------".format(idx+1)) receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {} has confidence: {}".format(receipt_type.value, receipt_type.confidence)) merchant_name = receipt.fields.get("MerchantName") if merchant_name: print("Merchant Name: {} has confidence: {}".format(merchant_name.value, merchant_name.confidence)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {} has confidence: {}".format(transaction_date.value, transaction_date.confidence)) if receipt.fields.get("Items"): print("Receipt items:") for idx, item in enumerate(receipt.fields.get("Items").value): print("...Item #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("......Item Name: {} has confidence: {}".format(item_name.value, item_name.confidence)) item_quantity = item.value.get("Quantity") if item_quantity: print("......Item Quantity: {} has confidence: {}".format(item_quantity.value, item_quantity.confidence)) item_price = item.value.get("Price") if item_price: print("......Individual Item Price: {} has confidence: {}".format(item_price.value, item_price.confidence)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("......Total Item Price: {} has confidence: {}".format(item_total_price.value, item_total_price.confidence)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} has confidence: {}".format(subtotal.value, subtotal.confidence)) tax = receipt.fields.get("Tax") if tax: print("Tax: {} has confidence: {}".format(tax.value, tax.confidence)) tip = receipt.fields.get("Tip") if tip: print("Tip: {} has confidence: {}".format(tip.value, tip.confidence)) total = receipt.fields.get("Total") if total: print("Total: {} has confidence: {}".format(total.value, total.confidence)) print("--------------------------------------")
-
close
() → None[source]¶ Close the
FormRecognizerClient
session.
-
class
azure.ai.formrecognizer.
FormRecognizerError
(**kwargs)[source]¶ Represents an error that occurred while training.
New in version v2.1: Support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
FormSelectionMark
(**kwargs)[source]¶ Information about the extracted selection mark.
- Variables
text (str) – The text content - not returned for FormSelectionMark.
bounding_box (list[Point]) – A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
confidence (float) – Measures the degree of certainty of the recognition result. Value is between [0.0, 1.0].
state (str) – State of the selection mark. Possible values include: “selected”, “unselected”.
page_number (int) – The 1-based number of the page in which this content is present.
kind (str) – For FormSelectionMark, this is “selectionMark”.
New in version v2.1: Support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
FormTable
(**kwargs)[source]¶ Information about the extracted table contained on a page.
- Variables
page_number (int) – The 1-based number of the page in which this table is present.
cells (list[FormTableCell]) – List of cells contained in the table.
row_count (int) – Number of rows in table.
column_count (int) – Number of columns in table.
bounding_box (list[Point]) – A list of 4 points representing the quadrilateral bounding box that outlines the table. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
New in version v2.1: The bounding_box property, support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
FormTableCell
(**kwargs)[source]¶ Represents a cell contained in a table recognized from the input document.
- Variables
text (str) – Text content of the cell.
row_index (int) – Row index of the cell.
column_index (int) – Column index of the cell.
row_span (int) – Number of rows spanned by this cell.
column_span (int) – Number of columns spanned by this cell.
bounding_box (list[Point]) – A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
confidence (float) – Measures the degree of certainty of the recognition result. Value is between [0.0, 1.0].
is_header (bool) – Whether the current cell is a header cell.
is_footer (bool) – Whether the current cell is a footer cell.
page_number (int) – The 1-based number of the page in which this content is present.
field_elements (list[Union[FormElement, FormWord, FormLine, FormSelectionMark]]) – When include_field_elements is set to true, a list of elements constituting this cell is returned. The list constitutes of elements such as lines, words, and selection marks. For calls to begin_recognize_content(), this list is always populated.
New in version v2.1: FormSelectionMark is added to the types returned in the list of field_elements, support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
FormTrainingClient
(endpoint: str, credential: Union[AzureKeyCredential, TokenCredential], **kwargs: Any)[source]¶ FormTrainingClient is the Form Recognizer interface to use for creating and managing custom models. It provides methods for training models on the forms you provide, as well as methods for viewing and deleting models, accessing account properties, copying models to another Form Recognizer resource, and composing models from a collection of existing models trained with labels.
Note
FormTrainingClient should be used with API versions <=v2.1. To use API versions 2021-09-30-preview and up, instantiate a DocumentModelAdministrationClient.
- Parameters
endpoint (str) – Supported Cognitive Services endpoints (protocol and hostname, for example: https://westus2.api.cognitive.microsoft.com).
credential (
AzureKeyCredential
orTokenCredential
) – Credentials needed for the client to connect to Azure. This is an instance of AzureKeyCredential if using an API key or a token credential fromazure.identity
.
- Keyword Arguments
api_version (str or FormRecognizerApiVersion) – The API version of the service to use for requests. It defaults to API version v2.1. Setting to an older version may result in reduced feature compatibility. To use the latest supported API version and features, instantiate a DocumentModelAdministrationClient instead.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormTrainingClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
"""DefaultAzureCredential will use the values from these environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET """ from azure.ai.formrecognizer import FormTrainingClient from azure.identity import DefaultAzureCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] credential = DefaultAzureCredential() form_training_client = FormTrainingClient(endpoint, credential)
-
begin_copy_model
(model_id: str, target: Dict, **kwargs: Any) → LROPoller[CustomFormModelInfo][source]¶ Copy a custom model stored in this resource (the source) to the user specified target Form Recognizer resource. This should be called with the source Form Recognizer resource (with the model that is intended to be copied). The target parameter should be supplied from the target resource’s output from calling the
get_copy_authorization()
method.- Parameters
model_id (str) – Model identifier of the model to copy to target resource.
target (dict) – The copy authorization generated from the target resource’s call to
get_copy_authorization()
.
- Keyword Arguments
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a
CustomFormModelInfo
.- Return type
- Raises
Example:
source_client = FormTrainingClient(endpoint=source_endpoint, credential=AzureKeyCredential(source_key)) poller = source_client.begin_copy_model( model_id=source_model_id, target=target # output from target client's call to get_copy_authorization() ) copied_over_model = poller.result() print("Model ID: {}".format(copied_over_model.model_id)) print("Status: {}".format(copied_over_model.status))
-
begin_create_composed_model
(model_ids: List[str], **kwargs: Any) → LROPoller[CustomFormModel][source]¶ Creates a composed model from a collection of existing models that were trained with labels.
A composed model allows multiple models to be called with a single model ID. When a document is submitted to be analyzed with a composed model ID, a classification step is first performed to route it to the correct custom model.
- Parameters
model_ids (list[str]) – List of model IDs to use in the composed model.
- Keyword Arguments
- Returns
An instance of an LROPoller. Call result() on the poller object to return a
CustomFormModel
.- Return type
- Raises
New in version v2.1: The begin_create_composed_model client method
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormTrainingClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] po_supplies = os.environ['PURCHASE_ORDER_OFFICE_SUPPLIES_SAS_URL_V2'] po_equipment = os.environ['PURCHASE_ORDER_OFFICE_EQUIPMENT_SAS_URL_V2'] po_furniture = os.environ['PURCHASE_ORDER_OFFICE_FURNITURE_SAS_URL_V2'] po_cleaning_supplies = os.environ['PURCHASE_ORDER_OFFICE_CLEANING_SUPPLIES_SAS_URL_V2'] form_training_client = FormTrainingClient(endpoint=endpoint, credential=AzureKeyCredential(key)) supplies_poller = form_training_client.begin_training( po_supplies, use_training_labels=True, model_name="Purchase order - Office supplies" ) equipment_poller = form_training_client.begin_training( po_equipment, use_training_labels=True, model_name="Purchase order - Office Equipment" ) furniture_poller = form_training_client.begin_training( po_furniture, use_training_labels=True, model_name="Purchase order - Furniture" ) cleaning_supplies_poller = form_training_client.begin_training( po_cleaning_supplies, use_training_labels=True, model_name="Purchase order - Cleaning Supplies" ) supplies_model = supplies_poller.result() equipment_model = equipment_poller.result() furniture_model = furniture_poller.result() cleaning_supplies_model = cleaning_supplies_poller.result() models_trained_with_labels = [ supplies_model.model_id, equipment_model.model_id, furniture_model.model_id, cleaning_supplies_model.model_id ] poller = form_training_client.begin_create_composed_model( models_trained_with_labels, model_name="Office Supplies Composed Model" ) model = poller.result() print("Office Supplies Composed Model Info:") print("Model ID: {}".format(model.model_id)) print("Model name: {}".format(model.model_name)) print("Is this a composed model?: {}".format(model.properties.is_composed_model)) print("Status: {}".format(model.status)) print("Composed model creation started on: {}".format(model.training_started_on)) print("Creation completed on: {}".format(model.training_completed_on))
-
begin_training
(training_files_url: str, use_training_labels: bool, **kwargs: Any) → LROPoller[CustomFormModel][source]¶ Create and train a custom model. The request must include a training_files_url parameter that is an externally accessible Azure storage blob container URI (preferably a Shared Access Signature URI). Note that a container URI (without SAS) is accepted only when the container is public. Models are trained using documents that are of the following content type - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’, or ‘image/bmp’. Other types of content in the container is ignored.
- Parameters
training_files_url (str) – An Azure Storage blob container’s SAS URI. A container URI (without SAS) can be used if the container is public. For more information on setting up a training data set, see: https://docs.microsoft.com/azure/cognitive-services/form-recognizer/build-training-data-set
use_training_labels (bool) – Whether to train with labels or not. Corresponding labeled files must exist in the blob container if set to True.
- Keyword Arguments
prefix (str) – A case-sensitive prefix string to filter documents in the source path for training. For example, when using an Azure storage blob URI, use the prefix to restrict sub folders for training.
include_subfolders (bool) – A flag to indicate if subfolders within the set of prefix folders will also need to be included when searching for content to be preprocessed. Not supported if training with labels.
model_name (str) – An optional, user-defined name to associate with your model.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an LROPoller. Call result() on the poller object to return a
CustomFormModel
.- Return type
- Raises
HttpResponseError – Note that if the training fails, the exception is raised, but a model with an “invalid” status is still created. You can delete this model by calling
delete_model()
New in version v2.1: The model_name keyword argument
Example:
from azure.ai.formrecognizer import FormTrainingClient from azure.core.credentials import AzureKeyCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] container_sas_url = os.environ["CONTAINER_SAS_URL_V2"] form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key)) poller = form_training_client.begin_training(container_sas_url, use_training_labels=False) model = poller.result() # Custom model information print("Model ID: {}".format(model.model_id)) print("Status: {}".format(model.status)) print("Model name: {}".format(model.model_name)) print("Training started on: {}".format(model.training_started_on)) print("Training completed on: {}".format(model.training_completed_on)) print("Recognized fields:") # Looping through the submodels, which contains the fields they were trained on for submodel in model.submodels: print("...The submodel has form type '{}'".format(submodel.form_type)) for name, field in submodel.fields.items(): print("...The model found field '{}' to have label '{}'".format( name, field.label ))
-
close
() → None[source]¶ Close the
FormTrainingClient
session.
-
delete_model
(model_id: str, **kwargs: Any) → None[source]¶ Mark model for deletion. Model artifacts will be permanently removed within a predetermined period.
- Parameters
model_id (str) – Model identifier.
- Return type
- Raises
Example:
form_training_client.delete_model(model_id=custom_model.model_id) try: form_training_client.get_custom_model(model_id=custom_model.model_id) except ResourceNotFoundError: print("Successfully deleted model with id {}".format(custom_model.model_id))
-
get_account_properties
(**kwargs: Any) → AccountProperties[source]¶ Get information about the models on the form recognizer account.
- Returns
Summary of models on account - custom model count, custom model limit.
- Return type
- Raises
Example:
form_training_client = FormTrainingClient(endpoint=endpoint, credential=AzureKeyCredential(key)) # First, we see how many custom models we have, and what our limit is account_properties = form_training_client.get_account_properties() print("Our account has {} custom models, and we can have at most {} custom models\n".format( account_properties.custom_model_count, account_properties.custom_model_limit ))
Generate authorization for copying a custom model into the target Form Recognizer resource. This should be called by the target resource (where the model will be copied to) and the output can be passed as the target parameter into
begin_copy_model()
.- Parameters
resource_id (str) – Azure Resource Id of the target Form Recognizer resource where the model will be copied to.
resource_region (str) – Location of the target Form Recognizer resource. A valid Azure region name supported by Cognitive Services. For example, ‘westus’, ‘eastus’ etc. See https://azure.microsoft.com/global-infrastructure/services/?products=cognitive-services for the regional availability of Cognitive Services.
- Returns
A dictionary with values for the copy authorization - “modelId”, “accessToken”, “resourceId”, “resourceRegion”, and “expirationDateTimeTicks”.
- Return type
- Raises
Example:
target_client = FormTrainingClient(endpoint=target_endpoint, credential=AzureKeyCredential(target_key)) target = target_client.get_copy_authorization( resource_region=target_region, resource_id=target_resource_id ) # model ID that target client will use to access the model once copy is complete print("Model ID: {}".format(target["modelId"]))
-
get_custom_model
(model_id: str, **kwargs: Any) → CustomFormModel[source]¶ Get a description of a custom model, including the types of forms it can recognize, and the fields it will extract for each form type.
- Parameters
model_id (str) – Model identifier.
- Returns
CustomFormModel
- Return type
- Raises
Example:
custom_model = form_training_client.get_custom_model(model_id=model.model_id) print("\nModel ID: {}".format(custom_model.model_id)) print("Status: {}".format(custom_model.status)) print("Model name: {}".format(custom_model.model_name)) print("Is this a composed model?: {}".format(custom_model.properties.is_composed_model)) print("Training started on: {}".format(custom_model.training_started_on)) print("Training completed on: {}".format(custom_model.training_completed_on))
-
get_form_recognizer_client
(**kwargs: Any) → azure.ai.formrecognizer._form_recognizer_client.FormRecognizerClient[source]¶ Get an instance of a FormRecognizerClient from FormTrainingClient.
- Return type
- Returns
A FormRecognizerClient
-
list_custom_models
(**kwargs: Any) → ItemPaged[CustomFormModelInfo][source]¶ List information for each model, including model id, model status, and when it was created and last modified.
- Returns
ItemPaged[
CustomFormModelInfo
]- Return type
- Raises
Example:
custom_models = form_training_client.list_custom_models() print("We have models with the following IDs:") for model in custom_models: print(model.model_id)
-
class
azure.ai.formrecognizer.
FormWord
(**kwargs)[source]¶ Represents a word recognized from the input document.
- Variables
text (str) – The text content of the word.
bounding_box (list[Point]) – A list of 4 points representing the quadrilateral bounding box that outlines the text. The points are listed in clockwise order: top-left, top-right, bottom-right, bottom-left. Units are in pixels for images and inches for PDF.
confidence (float) – Measures the degree of certainty of the recognition result. Value is between [0.0, 1.0].
page_number (int) – The 1-based number of the page in which this content is present.
kind (str) – For FormWord, this is “word”.
New in version v2.1: Support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
LengthUnit
(value)[source]¶ The unit used by the width, height and bounding box properties. For images, the unit is “pixel”. For PDF, the unit is “inch”.
-
INCH
= 'inch'¶
-
PIXEL
= 'pixel'¶
-
-
class
azure.ai.formrecognizer.
ModelOperation
(**kwargs)[source]¶ ModelOperation consists of information about the model operation, including the result or error of the operation if it has completed.
Note that operation information only persists for 24 hours. If the operation was successful, the model can also be accessed using the
get_model()
orlist_models()
APIs.- Variables
operation_id (str) – Operation ID.
status (str) – Operation status. Possible values include: “notStarted”, “running”, “failed”, “succeeded”, “canceled”.
percent_completed (int) – Operation progress (0-100).
created_on (datetime) – Date and time (UTC) when the operation was created.
last_updated_on (datetime) – Date and time (UTC) when the operation was last updated.
kind (str) – Type of operation. Possible values include: “documentModelBuild”, “documentModelCompose”, “documentModelCopyTo”.
resource_location (str) – URL of the resource targeted by this operation.
error (DocumentAnalysisError) – Encountered error, includes the error code, message, and details for why the operation failed.
result (DocumentModel) – Operation result upon success. Returns a DocumentModel which contains all information about the model including the doc types and fields it can analyze from documents.
-
class
azure.ai.formrecognizer.
ModelOperationInfo
(**kwargs)[source]¶ Model operation information, including the kind and status of the operation, when it was created, and more.
Note that operation information only persists for 24 hours. If the operation was successful, the model can be accessed using the
get_model()
orlist_models()
APIs. To find out why an operation failed, useget_operation()
and provide the operation_id.- Variables
operation_id (str) – Operation ID.
status (str) – Operation status. Possible values include: “notStarted”, “running”, “failed”, “succeeded”, “canceled”.
percent_completed (int) – Operation progress (0-100).
created_on (datetime) – Date and time (UTC) when the operation was created.
last_updated_on (datetime) – Date and time (UTC) when the operation was last updated.
kind (str) – Type of operation. Possible values include: “documentModelBuild”, “documentModelCompose”, “documentModelCopyTo”.
resource_location (str) – URL of the resource targeted by this operation.
-
class
azure.ai.formrecognizer.
Point
(x, y)[source]¶ The x, y coordinate of a point on a bounding box.
New in version v2.1: Support for to_dict and from_dict methods
Create new instance of Point(x, y)
-
count
(value) → integer – return number of occurrences of value¶
-
classmethod
from_dict
(data: dict) → azure.ai.formrecognizer._models.Point[source]¶ Converts a dict in the shape of a Point to the model itself.
-
index
(value[, start[, stop]]) → integer – return first index of value.¶ Raises ValueError if the value is not present.
-
property
x
¶ Alias for field number 0
-
property
y
¶ Alias for field number 1
-
-
class
azure.ai.formrecognizer.
RecognizedForm
(**kwargs)[source]¶ Represents a form that has been recognized by a trained or prebuilt model. The fields property contains the form fields that were extracted from the form. Tables, text lines/words, and selection marks are extracted per page and found in the pages property.
- Variables
form_type (str) – The type of form the model identified the submitted form to be.
form_type_confidence (str) – Confidence of the type of form the model identified the submitted form to be.
model_id (str) – Model identifier of model used to analyze form if not using a prebuilt model.
fields (dict[str, FormField]) – A dictionary of the fields found on the form. The fields dictionary keys are the name of the field. For models trained with labels, this is the training-time label of the field. For models trained without labels, a unique name is generated for each field.
page_range (FormPageRange) – The first and last page number of the input form.
pages (list[FormPage]) – A list of pages recognized from the input document. Contains lines, words, selection marks, tables and page metadata.
New in version v2.1: The form_type_confidence and model_id properties, support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
TextAppearance
(**kwargs)[source]¶ An object representing the appearance of the text line.
- Variables
New in version v2.1: Support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
TrainingDocumentInfo
(**kwargs)[source]¶ Report for an individual document used for training a custom model.
- Variables
name (str) – The name of the document.
status (str) – The
TrainingStatus
of the training operation. Possible values include: ‘succeeded’, ‘partiallySucceeded’, ‘failed’.page_count (int) – Total number of pages trained.
errors (list[FormRecognizerError]) – List of any errors for document.
model_id (str) – The model ID that used the document to train.
New in version v2.1: The model_id property, support for to_dict and from_dict methods
-
class
azure.ai.formrecognizer.
TrainingStatus
(value)[source]¶ Status of the training operation.
-
FAILED
= 'failed'¶
-
PARTIALLY_SUCCEEDED
= 'partiallySucceeded'¶
-
SUCCEEDED
= 'succeeded'¶
-