azure.ai.formrecognizer.aio package¶
-
class
azure.ai.formrecognizer.aio.
FormRecognizerClient
(endpoint: str, credential: Union[AzureKeyCredential, AsyncTokenCredential], **kwargs: Any)[source]¶ FormRecognizerClient extracts information from forms and images into structured data. It is the interface to use for analyzing with prebuilt models (receipts, business cards, invoices, identity documents), recognizing content/layout from forms, and analyzing custom forms from trained models. It provides different methods based on inputs from a URL and inputs from a stream.
- Parameters
endpoint (str) – Supported Cognitive Services endpoints (protocol and hostname, for example: https://westus2.api.cognitive.microsoft.com).
credential (
AzureKeyCredential
orAsyncTokenCredential
) – Credentials needed for the client to connect to Azure. This is an instance of AzureKeyCredential if using an API key or a token credential fromazure.identity
.
- Keyword Arguments
api_version (str or FormRecognizerApiVersion) – The API version of the service to use for requests. It defaults to the latest service version. Setting to an older version may result in reduced feature compatibility.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient(endpoint, AzureKeyCredential(key))
"""DefaultAzureCredential will use the values from these environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET """ from azure.ai.formrecognizer.aio import FormRecognizerClient from azure.identity.aio import DefaultAzureCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] credential = DefaultAzureCredential() form_recognizer_client = FormRecognizerClient(endpoint, credential)
-
async
begin_recognize_business_cards
(business_card: Union[bytes, IO[bytes]], **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given business card. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
See fields found on a business card here: https://aka.ms/formrecognizer/businesscardfields
- Parameters
business_card (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
locale (str) – Locale of the business card. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_business_cards client method
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) async with form_recognizer_client: with open(path_to_sample_forms, "rb") as f: poller = await form_recognizer_client.begin_recognize_business_cards(business_card=f, locale="en-US") business_cards = await poller.result() for idx, business_card in enumerate(business_cards): print("--------Recognizing business card #{}--------".format(idx+1)) contact_names = business_card.fields.get("ContactNames") if contact_names: for contact_name in contact_names.value: print("Contact First Name: {} has confidence: {}".format( contact_name.value["FirstName"].value, contact_name.value["FirstName"].confidence )) print("Contact Last Name: {} has confidence: {}".format( contact_name.value["LastName"].value, contact_name.value["LastName"].confidence )) company_names = business_card.fields.get("CompanyNames") if company_names: for company_name in company_names.value: print("Company Name: {} has confidence: {}".format(company_name.value, company_name.confidence)) departments = business_card.fields.get("Departments") if departments: for department in departments.value: print("Department: {} has confidence: {}".format(department.value, department.confidence)) job_titles = business_card.fields.get("JobTitles") if job_titles: for job_title in job_titles.value: print("Job Title: {} has confidence: {}".format(job_title.value, job_title.confidence)) emails = business_card.fields.get("Emails") if emails: for email in emails.value: print("Email: {} has confidence: {}".format(email.value, email.confidence)) websites = business_card.fields.get("Websites") if websites: for website in websites.value: print("Website: {} has confidence: {}".format(website.value, website.confidence)) addresses = business_card.fields.get("Addresses") if addresses: for address in addresses.value: print("Address: {} has confidence: {}".format(address.value, address.confidence)) mobile_phones = business_card.fields.get("MobilePhones") if mobile_phones: for phone in mobile_phones.value: print("Mobile phone number: {} has confidence: {}".format(phone.value, phone.confidence)) faxes = business_card.fields.get("Faxes") if faxes: for fax in faxes.value: print("Fax number: {} has confidence: {}".format(fax.value, fax.confidence)) work_phones = business_card.fields.get("WorkPhones") if work_phones: for work_phone in work_phones.value: print("Work phone number: {} has confidence: {}".format(work_phone.value, work_phone.confidence)) other_phones = business_card.fields.get("OtherPhones") if other_phones: for other_phone in other_phones.value: print("Other phone number: {} has confidence: {}".format(other_phone.value, other_phone.confidence))
-
async
begin_recognize_business_cards_from_url
(business_card_url: str, **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given business card. The input document must be the location (URL) of the card to be analyzed.
See fields found on a business card here: https://aka.ms/formrecognizer/businesscardfields
- Parameters
business_card_url (str) – The URL of the business card to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
locale (str) – Locale of the business card. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_business_cards_from_url client method
-
async
begin_recognize_content
(form: Union[bytes, IO[bytes]], **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[List[azure.ai.formrecognizer._models.FormPage]][source]¶ Extract text and content/layout information from a given document. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
- Parameters
form (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
language (str) – The BCP-47 language code of the text in the document. See supported language codes here: https://docs.microsoft.com/azure/cognitive-services/form-recognizer/language-support. Content supports auto language identification and multilanguage documents, so only provide a language code if you would like to force the documented to be processed as that specific language.
reading_order (str) – Reading order algorithm to sort the text lines returned. Supported reading orders include: basic (default), natural. Set ‘basic’ to sort lines left to right and top to bottom, although in some cases proximity is treated with higher priority. Set ‘natural’ to sort lines by using positional information to keep nearby lines together.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a list[
FormPage
].- Return type
- Raises
New in version v2.1: The pages, language and reading_order keyword arguments and support for image/bmp content
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] async with FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) as form_recognizer_client: with open(path_to_sample_forms, "rb") as f: poller = await form_recognizer_client.begin_recognize_content(form=f) form_pages = await poller.result() for idx, content in enumerate(form_pages): print("----Recognizing content from page #{}----".format(idx+1)) print("Page has width: {} and height: {}, measured with unit: {}".format( content.width, content.height, content.unit )) for table_idx, table in enumerate(content.tables): print("Table # {} has {} rows and {} columns".format(table_idx, table.row_count, table.column_count)) print("Table # {} location on page: {}".format(table_idx, format_bounding_box(table.bounding_box))) for cell in table.cells: print("...Cell[{}][{}] has text '{}' within bounding box '{}'".format( cell.row_index, cell.column_index, cell.text, format_bounding_box(cell.bounding_box) )) for line_idx, line in enumerate(content.lines): print("Line # {} has word count '{}' and text '{}' within bounding box '{}'".format( line_idx, len(line.words), line.text, format_bounding_box(line.bounding_box) )) if line.appearance: if line.appearance.style_name == "handwriting" and line.appearance.style_confidence > 0.8: print("Text line '{}' is handwritten and might be a signature.".format(line.text)) for word in line.words: print("...Word '{}' has a confidence of {}".format(word.text, word.confidence)) for selection_mark in content.selection_marks: print("Selection mark is '{}' within bounding box '{}' and has a confidence of {}".format( selection_mark.state, format_bounding_box(selection_mark.bounding_box), selection_mark.confidence )) print("----------------------------------------")
-
async
begin_recognize_content_from_url
(form_url: str, **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[List[azure.ai.formrecognizer._models.FormPage]][source]¶ Extract text and layout information from a given document. The input document must be the location (URL) of the document to be analyzed.
- Parameters
form_url (str) – The URL of the form to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
language (str) – The BCP-47 language code of the text in the document. See supported language codes here: https://docs.microsoft.com/azure/cognitive-services/form-recognizer/language-support. Content supports auto language identification and multilanguage documents, so only provide a language code if you would like to force the documented to be processed as that specific language.
reading_order (str) – Reading order algorithm to sort the text lines returned. Supported reading orders include: basic (default), natural. Set ‘basic’ to sort lines left to right and top to bottom, although in some cases proximity is treated with higher priority. Set ‘natural’ to sort lines by using positional information to keep nearby lines together.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a list[
FormPage
].- Return type
- Raises
New in version v2.1: The pages, language and reading_order keyword arguments and support for image/bmp content
-
async
begin_recognize_custom_forms
(model_id: str, form: Union[bytes, IO[bytes]], **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Analyze a custom form with a model trained with or without labels. The form to analyze should be of the same type as the forms that were used to train the model. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’, or ‘image/bmp’.
- Parameters
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] model_id = os.getenv("CUSTOM_TRAINED_MODEL_ID", custom_model_id) async with FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) as form_recognizer_client: # Make sure your form's type is included in the list of form types the custom model can recognize with open(path_to_sample_forms, "rb") as f: poller = await form_recognizer_client.begin_recognize_custom_forms( model_id=model_id, form=f, include_field_elements=True ) forms = await poller.result() for idx, form in enumerate(forms): print("--------Recognizing Form #{}--------".format(idx+1)) print("Form has type {}".format(form.form_type)) print("Form has form type confidence {}".format(form.form_type_confidence)) print("Form was analyzed with model with ID {}".format(form.model_id)) for name, field in form.fields.items(): # each field is of type FormField # label_data is populated if you are using a model trained without labels, # since the service needs to make predictions for labels if not explicitly given to it. if field.label_data: print("...Field '{}' has label '{}' with a confidence score of {}".format( name, field.label_data.text, field.confidence )) print("...Label '{}' has value '{}' with a confidence score of {}".format( field.label_data.text if field.label_data else name, field.value, field.confidence )) # iterate over tables, lines, and selection marks on each page for page in form.pages: for i, table in enumerate(page.tables): print("\nTable {} on page {}".format(i + 1, table.page_number)) for cell in table.cells: print("...Cell[{}][{}] has text '{}' with confidence {}".format( cell.row_index, cell.column_index, cell.text, cell.confidence )) print("\nLines found on page {}".format(page.page_number)) for line in page.lines: print("...Line '{}' is made up of the following words: ".format(line.text)) for word in line.words: print("......Word '{}' has a confidence of {}".format( word.text, word.confidence )) if page.selection_marks: print("\nSelection marks found on page {}".format(page.page_number)) for selection_mark in page.selection_marks: print("......Selection mark is '{}' and has a confidence of {}".format( selection_mark.state, selection_mark.confidence )) print("-----------------------------------")
-
async
begin_recognize_custom_forms_from_url
(model_id: str, form_url: str, **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Analyze a custom form with a model trained with or without labels. The form to analyze should be of the same type as the forms that were used to train the model. The input document must be the location (URL) of the document to be analyzed.
- Parameters
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
-
async
begin_recognize_identity_documents
(identity_document: Union[bytes, IO[bytes]], **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given identity document. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
See fields found on an identity document here: https://aka.ms/formrecognizer/iddocumentfields
- Parameters
identity_document (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.continuation_token (str) – A continuation token to restart a poller from a saved state.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_identity_documents client method
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] async with FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) as form_recognizer_client: with open(path_to_sample_forms, "rb") as f: poller = await form_recognizer_client.begin_recognize_identity_documents(identity_document=f) id_documents = await poller.result() for idx, id_document in enumerate(id_documents): print("--------Recognizing ID document #{}--------".format(idx+1)) first_name = id_document.fields.get("FirstName") if first_name: print("First Name: {} has confidence: {}".format(first_name.value, first_name.confidence)) last_name = id_document.fields.get("LastName") if last_name: print("Last Name: {} has confidence: {}".format(last_name.value, last_name.confidence)) document_number = id_document.fields.get("DocumentNumber") if document_number: print("Document Number: {} has confidence: {}".format(document_number.value, document_number.confidence)) dob = id_document.fields.get("DateOfBirth") if dob: print("Date of Birth: {} has confidence: {}".format(dob.value, dob.confidence)) doe = id_document.fields.get("DateOfExpiration") if doe: print("Date of Expiration: {} has confidence: {}".format(doe.value, doe.confidence)) sex = id_document.fields.get("Sex") if sex: print("Sex: {} has confidence: {}".format(sex.value, sex.confidence)) address = id_document.fields.get("Address") if address: print("Address: {} has confidence: {}".format(address.value, address.confidence)) country_region = id_document.fields.get("CountryRegion") if country_region: print("Country/Region: {} has confidence: {}".format(country_region.value, country_region.confidence)) region = id_document.fields.get("Region") if region: print("Region: {} has confidence: {}".format(region.value, region.confidence))
-
async
begin_recognize_identity_documents_from_url
(identity_document_url: str, **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given identity document. The input document must be the location (URL) of the identity document to be analyzed.
See fields found on an identity document here: https://aka.ms/formrecognizer/iddocumentfields
- Parameters
identity_document_url (str) – The URL of the identity document to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
continuation_token (str) – A continuation token to restart a poller from a saved state.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_identity_documents_from_url client method
-
async
begin_recognize_invoices
(invoice: str, **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given invoice. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
See fields found on a invoice here: https://aka.ms/formrecognizer/invoicefields
- Parameters
invoice (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
locale (str) – Locale of the invoice. Supported locales include: en-US
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_invoices client method
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] async with FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) as form_recognizer_client: with open(path_to_sample_forms, "rb") as f: poller = await form_recognizer_client.begin_recognize_invoices(invoice=f, locale="en-US") invoices = await poller.result() for idx, invoice in enumerate(invoices): print("--------Recognizing invoice #{}--------".format(idx+1)) vendor_name = invoice.fields.get("VendorName") if vendor_name: print("Vendor Name: {} has confidence: {}".format(vendor_name.value, vendor_name.confidence)) vendor_address = invoice.fields.get("VendorAddress") if vendor_address: print("Vendor Address: {} has confidence: {}".format(vendor_address.value, vendor_address.confidence)) vendor_address_recipient = invoice.fields.get("VendorAddressRecipient") if vendor_address_recipient: print("Vendor Address Recipient: {} has confidence: {}".format(vendor_address_recipient.value, vendor_address_recipient.confidence)) customer_name = invoice.fields.get("CustomerName") if customer_name: print("Customer Name: {} has confidence: {}".format(customer_name.value, customer_name.confidence)) customer_id = invoice.fields.get("CustomerId") if customer_id: print("Customer Id: {} has confidence: {}".format(customer_id.value, customer_id.confidence)) customer_address = invoice.fields.get("CustomerAddress") if customer_address: print("Customer Address: {} has confidence: {}".format(customer_address.value, customer_address.confidence)) customer_address_recipient = invoice.fields.get("CustomerAddressRecipient") if customer_address_recipient: print("Customer Address Recipient: {} has confidence: {}".format(customer_address_recipient.value, customer_address_recipient.confidence)) invoice_id = invoice.fields.get("InvoiceId") if invoice_id: print("Invoice Id: {} has confidence: {}".format(invoice_id.value, invoice_id.confidence)) invoice_date = invoice.fields.get("InvoiceDate") if invoice_date: print("Invoice Date: {} has confidence: {}".format(invoice_date.value, invoice_date.confidence)) invoice_total = invoice.fields.get("InvoiceTotal") if invoice_total: print("Invoice Total: {} has confidence: {}".format(invoice_total.value, invoice_total.confidence)) due_date = invoice.fields.get("DueDate") if due_date: print("Due Date: {} has confidence: {}".format(due_date.value, due_date.confidence)) purchase_order = invoice.fields.get("PurchaseOrder") if purchase_order: print("Purchase Order: {} has confidence: {}".format(purchase_order.value, purchase_order.confidence)) billing_address = invoice.fields.get("BillingAddress") if billing_address: print("Billing Address: {} has confidence: {}".format(billing_address.value, billing_address.confidence)) billing_address_recipient = invoice.fields.get("BillingAddressRecipient") if billing_address_recipient: print("Billing Address Recipient: {} has confidence: {}".format(billing_address_recipient.value, billing_address_recipient.confidence)) shipping_address = invoice.fields.get("ShippingAddress") if shipping_address: print("Shipping Address: {} has confidence: {}".format(shipping_address.value, shipping_address.confidence)) shipping_address_recipient = invoice.fields.get("ShippingAddressRecipient") if shipping_address_recipient: print("Shipping Address Recipient: {} has confidence: {}".format(shipping_address_recipient.value, shipping_address_recipient.confidence)) print("Invoice items:") for idx, item in enumerate(invoice.fields.get("Items").value): print("...Item #{}".format(idx+1)) item_description = item.value.get("Description") if item_description: print("......Description: {} has confidence: {}".format(item_description.value, item_description.confidence)) item_quantity = item.value.get("Quantity") if item_quantity: print("......Quantity: {} has confidence: {}".format(item_quantity.value, item_quantity.confidence)) unit = item.value.get("Unit") if unit: print("......Unit: {} has confidence: {}".format(unit.value, unit.confidence)) unit_price = item.value.get("UnitPrice") if unit_price: print("......Unit Price: {} has confidence: {}".format(unit_price.value, unit_price.confidence)) product_code = item.value.get("ProductCode") if product_code: print("......Product Code: {} has confidence: {}".format(product_code.value, product_code.confidence)) item_date = item.value.get("Date") if item_date: print("......Date: {} has confidence: {}".format(item_date.value, item_date.confidence)) tax = item.value.get("Tax") if tax: print("......Tax: {} has confidence: {}".format(tax.value, tax.confidence)) amount = item.value.get("Amount") if amount: print("......Amount: {} has confidence: {}".format(amount.value, amount.confidence)) subtotal = invoice.fields.get("SubTotal") if subtotal: print("Subtotal: {} has confidence: {}".format(subtotal.value, subtotal.confidence)) total_tax = invoice.fields.get("TotalTax") if total_tax: print("Total Tax: {} has confidence: {}".format(total_tax.value, total_tax.confidence)) previous_unpaid_balance = invoice.fields.get("PreviousUnpaidBalance") if previous_unpaid_balance: print("Previous Unpaid Balance: {} has confidence: {}".format(previous_unpaid_balance.value, previous_unpaid_balance.confidence)) amount_due = invoice.fields.get("AmountDue") if amount_due: print("Amount Due: {} has confidence: {}".format(amount_due.value, amount_due.confidence)) service_start_date = invoice.fields.get("ServiceStartDate") if service_start_date: print("Service Start Date: {} has confidence: {}".format(service_start_date.value, service_start_date.confidence)) service_end_date = invoice.fields.get("ServiceEndDate") if service_end_date: print("Service End Date: {} has confidence: {}".format(service_end_date.value, service_end_date.confidence)) service_address = invoice.fields.get("ServiceAddress") if service_address: print("Service Address: {} has confidence: {}".format(service_address.value, service_address.confidence)) service_address_recipient = invoice.fields.get("ServiceAddressRecipient") if service_address_recipient: print("Service Address Recipient: {} has confidence: {}".format(service_address_recipient.value, service_address_recipient.confidence)) remittance_address = invoice.fields.get("RemittanceAddress") if remittance_address: print("Remittance Address: {} has confidence: {}".format(remittance_address.value, remittance_address.confidence)) remittance_address_recipient = invoice.fields.get("RemittanceAddressRecipient") if remittance_address_recipient: print("Remittance Address Recipient: {} has confidence: {}".format(remittance_address_recipient.value, remittance_address_recipient.confidence))
-
async
begin_recognize_invoices_from_url
(invoice_url: str, **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given invoice. The input document must be the location (URL) of the invoice to be analyzed.
See fields found on a invoice card here: https://aka.ms/formrecognizer/invoicefields
- Parameters
invoice_url (str) – The URL of the invoice to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
locale (str) – Locale of the invoice. Supported locales include: en-US
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The begin_recognize_invoices_from_url client method
-
async
begin_recognize_receipts
(receipt: Union[bytes, IO[bytes]], **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given sales receipt. The input document must be of one of the supported content types - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’ or ‘image/bmp’.
See fields found on a receipt here: https://aka.ms/formrecognizer/receiptfields
- Parameters
receipt (bytes or IO[bytes]) – JPEG, PNG, PDF, TIFF, or BMP type file stream or bytes.
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
content_type (str or FormContentType) – Content-type of the body sent to the API. Content-type is auto-detected, but can be overridden by passing this keyword argument. For options, see
FormContentType
.continuation_token (str) – A continuation token to restart a poller from a saved state.
locale (str) – Locale of the receipt. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The locale keyword argument and support for image/bmp content
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] async with FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) as form_recognizer_client: with open(path_to_sample_forms, "rb") as f: poller = await form_recognizer_client.begin_recognize_receipts(receipt=f, locale="en-US") receipts = await poller.result() for idx, receipt in enumerate(receipts): print("--------Recognizing receipt #{}--------".format(idx+1)) receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {} has confidence: {}".format(receipt_type.value, receipt_type.confidence)) merchant_name = receipt.fields.get("MerchantName") if merchant_name: print("Merchant Name: {} has confidence: {}".format(merchant_name.value, merchant_name.confidence)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {} has confidence: {}".format(transaction_date.value, transaction_date.confidence)) print("Receipt items:") for idx, item in enumerate(receipt.fields.get("Items").value): print("...Item #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("......Item Name: {} has confidence: {}".format(item_name.value, item_name.confidence)) item_quantity = item.value.get("Quantity") if item_quantity: print("......Item Quantity: {} has confidence: {}".format(item_quantity.value, item_quantity.confidence)) item_price = item.value.get("Price") if item_price: print("......Individual Item Price: {} has confidence: {}".format(item_price.value, item_price.confidence)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("......Total Item Price: {} has confidence: {}".format(item_total_price.value, item_total_price.confidence)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} has confidence: {}".format(subtotal.value, subtotal.confidence)) tax = receipt.fields.get("Tax") if tax: print("Tax: {} has confidence: {}".format(tax.value, tax.confidence)) tip = receipt.fields.get("Tip") if tip: print("Tip: {} has confidence: {}".format(tip.value, tip.confidence)) total = receipt.fields.get("Total") if total: print("Total: {} has confidence: {}".format(total.value, total.confidence)) print("--------------------------------------")
-
async
begin_recognize_receipts_from_url
(receipt_url: str, **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[List[azure.ai.formrecognizer._models.RecognizedForm]][source]¶ Extract field text and semantic values from a given sales receipt. The input document must be the location (URL) of the receipt to be analyzed.
See fields found on a receipt here: https://aka.ms/formrecognizer/receiptfields
- Parameters
receipt_url (str) – The URL of the receipt to analyze. The input must be a valid, encoded URL of one of the supported formats: JPEG, PNG, PDF, TIFF, or BMP.
- Keyword Arguments
include_field_elements (bool) – Whether or not to include all lines per page and field elements such as lines, words, and selection marks for each form field.
continuation_token (str) – A continuation token to restart a poller from a saved state.
locale (str) – Locale of the receipt. Supported locales include: en-US, en-AU, en-CA, en-GB, and en-IN.
pages (list[str]) – Custom page numbers for multi-page documents(PDF/TIFF). Input the page numbers and/or ranges of pages you want to get in the result. For a range of pages, use a hyphen, like pages=[“1-3”, “5-6”]. Separate each page number or range with a comma.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a list[
RecognizedForm
].- Return type
- Raises
New in version v2.1: The locale keyword argument and support for image/bmp content
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import FormRecognizerClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] async with FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) as form_recognizer_client: url = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/master/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/receipt/contoso-receipt.png" poller = await form_recognizer_client.begin_recognize_receipts_from_url(receipt_url=url) receipts = await poller.result() for idx, receipt in enumerate(receipts): print("--------Recognizing receipt #{}--------".format(idx+1)) receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {} has confidence: {}".format(receipt_type.value, receipt_type.confidence)) merchant_name = receipt.fields.get("MerchantName") if merchant_name: print("Merchant Name: {} has confidence: {}".format(merchant_name.value, merchant_name.confidence)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {} has confidence: {}".format(transaction_date.value, transaction_date.confidence)) print("Receipt items:") for idx, item in enumerate(receipt.fields.get("Items").value): print("...Item #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("......Item Name: {} has confidence: {}".format(item_name.value, item_name.confidence)) item_quantity = item.value.get("Quantity") if item_quantity: print("......Item Quantity: {} has confidence: {}".format(item_quantity.value, item_quantity.confidence)) item_price = item.value.get("Price") if item_price: print("......Individual Item Price: {} has confidence: {}".format(item_price.value, item_price.confidence)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("......Total Item Price: {} has confidence: {}".format(item_total_price.value, item_total_price.confidence)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} has confidence: {}".format(subtotal.value, subtotal.confidence)) tax = receipt.fields.get("Tax") if tax: print("Tax: {} has confidence: {}".format(tax.value, tax.confidence)) tip = receipt.fields.get("Tip") if tip: print("Tip: {} has confidence: {}".format(tip.value, tip.confidence)) total = receipt.fields.get("Total") if total: print("Total: {} has confidence: {}".format(total.value, total.confidence)) print("--------------------------------------")
-
async
close
() → None[source]¶ Close the
FormRecognizerClient
session.
-
class
azure.ai.formrecognizer.aio.
FormTrainingClient
(endpoint: str, credential: Union[AzureKeyCredential, AsyncTokenCredential], **kwargs: Any)[source]¶ FormTrainingClient is the Form Recognizer interface to use for creating and managing custom models. It provides methods for training models on the forms you provide, as well as methods for viewing and deleting models, accessing account properties, copying models to another Form Recognizer resource, and composing models from a collection of existing models trained with labels.
- Parameters
endpoint (str) – Supported Cognitive Services endpoints (protocol and hostname, for example: https://westus2.api.cognitive.microsoft.com).
credential (
AzureKeyCredential
orAsyncTokenCredential
) – Credentials needed for the client to connect to Azure. This is an instance of AzureKeyCredential if using an API key or a token credential fromazure.identity
.
- Keyword Arguments
api_version (str or FormRecognizerApiVersion) – The API version of the service to use for requests. It defaults to the latest service version. Setting to an older version may result in reduced feature compatibility.
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import FormTrainingClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] form_training_client = FormTrainingClient(endpoint, AzureKeyCredential(key))
"""DefaultAzureCredential will use the values from these environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET """ from azure.ai.formrecognizer.aio import FormTrainingClient from azure.identity.aio import DefaultAzureCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] credential = DefaultAzureCredential() form_training_client = FormTrainingClient(endpoint, credential)
-
async
begin_copy_model
(model_id: str, target: dict, **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[azure.ai.formrecognizer._models.CustomFormModelInfo][source]¶ Copy a custom model stored in this resource (the source) to the user specified target Form Recognizer resource. This should be called with the source Form Recognizer resource (with the model that is intended to be copied). The target parameter should be supplied from the target resource’s output from calling the
get_copy_authorization()
method.- Parameters
model_id (str) – Model identifier of the model to copy to target resource.
target (dict) – The copy authorization generated from the target resource’s call to
get_copy_authorization()
.
- Keyword Arguments
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a
CustomFormModelInfo
.- Return type
- Raises
Example:
source_client = FormTrainingClient(endpoint=source_endpoint, credential=AzureKeyCredential(source_key)) async with source_client: poller = await source_client.begin_copy_model( model_id=source_model_id, target=target # output from target client's call to get_copy_authorization() ) copied_over_model = await poller.result() print("Model ID: {}".format(copied_over_model.model_id)) print("Status: {}".format(copied_over_model.status))
-
async
begin_create_composed_model
(model_ids: List[str], **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[azure.ai.formrecognizer._models.CustomFormModel][source]¶ Creates a composed model from a collection of existing models that were trained with labels.
A composed model allows multiple models to be called with a single model ID. When a document is submitted to be analyzed with a composed model ID, a classification step is first performed to route it to the correct custom model.
- Parameters
model_ids (list[str]) – List of model IDs to use in the composed model.
- Keyword Arguments
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a
CustomFormModel
.- Return type
- Raises
New in version v2.1: The begin_create_composed_model client method
Example:
from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import FormTrainingClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] po_supplies = os.environ['PURCHASE_ORDER_OFFICE_SUPPLIES_SAS_URL'] po_equipment = os.environ['PURCHASE_ORDER_OFFICE_EQUIPMENT_SAS_URL'] po_furniture = os.environ['PURCHASE_ORDER_OFFICE_FURNITURE_SAS_URL'] po_cleaning_supplies = os.environ['PURCHASE_ORDER_OFFICE_CLEANING_SUPPLIES_SAS_URL'] form_training_client = FormTrainingClient(endpoint=endpoint, credential=AzureKeyCredential(key)) async with form_training_client: supplies_poller = await form_training_client.begin_training( po_supplies, use_training_labels=True, model_name="Purchase order - Office supplies" ) equipment_poller = await form_training_client.begin_training( po_equipment, use_training_labels=True, model_name="Purchase order - Office Equipment" ) furniture_poller = await form_training_client.begin_training( po_furniture, use_training_labels=True, model_name="Purchase order - Furniture" ) cleaning_supplies_poller = await form_training_client.begin_training( po_cleaning_supplies, use_training_labels=True, model_name="Purchase order - Cleaning Supplies" ) supplies_model = await supplies_poller.result() equipment_model = await equipment_poller.result() furniture_model = await furniture_poller.result() cleaning_supplies_model = await cleaning_supplies_poller.result() models_trained_with_labels = [ supplies_model.model_id, equipment_model.model_id, furniture_model.model_id, cleaning_supplies_model.model_id ] poller = await form_training_client.begin_create_composed_model( models_trained_with_labels, model_name="Office Supplies Composed Model" ) model = await poller.result() print("Office Supplies Composed Model Info:") print("Model ID: {}".format(model.model_id)) print("Model name: {}".format(model.model_name)) print("Is this a composed model?: {}".format(model.properties.is_composed_model)) print("Status: {}".format(model.status)) print("Composed model creation started on: {}".format(model.training_started_on)) print("Creation completed on: {}".format(model.training_completed_on))
-
async
begin_training
(training_files_url: str, use_training_labels: bool, **kwargs: Any) → azure.core.polling._async_poller.AsyncLROPoller[azure.ai.formrecognizer._models.CustomFormModel][source]¶ Create and train a custom model. The request must include a training_files_url parameter that is an externally accessible Azure storage blob container URI (preferably a Shared Access Signature URI). Note that a container URI (without SAS) is accepted only when the container is public. Models are trained using documents that are of the following content type - ‘application/pdf’, ‘image/jpeg’, ‘image/png’, ‘image/tiff’, or ‘image/bmp’. Other types of content in the container is ignored.
- Parameters
training_files_url (str) – An Azure Storage blob container’s SAS URI. A container URI (without SAS) can be used if the container is public. For more information on setting up a training data set, see: https://docs.microsoft.com/azure/cognitive-services/form-recognizer/build-training-data-set
use_training_labels (bool) – Whether to train with labels or not. Corresponding labeled files must exist in the blob container if set to True.
- Keyword Arguments
prefix (str) – A case-sensitive prefix string to filter documents in the source path for training. For example, when using a Azure storage blob URI, use the prefix to restrict sub folders for training.
include_subfolders (bool) – A flag to indicate if subfolders within the set of prefix folders will also need to be included when searching for content to be preprocessed. Not supported if training with labels.
model_name (str) – An optional, user-defined name to associate with your model.
continuation_token (str) – A continuation token to restart a poller from a saved state.
- Returns
An instance of an AsyncLROPoller. Call result() on the poller object to return a
CustomFormModel
.- Return type
- Raises
HttpResponseError – Note that if the training fails, the exception is raised, but a model with an “invalid” status is still created. You can delete this model by calling
delete_model()
New in version v2.1: The model_name keyword argument
Example:
from azure.ai.formrecognizer.aio import FormTrainingClient from azure.core.credentials import AzureKeyCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] container_sas_url = os.environ["CONTAINER_SAS_URL"] async with FormTrainingClient( endpoint, AzureKeyCredential(key) ) as form_training_client: poller = await form_training_client.begin_training(container_sas_url, use_training_labels=False) model = await poller.result() # Custom model information print("Model ID: {}".format(model.model_id)) print("Status: {}".format(model.status)) print("Model name: {}".format(model.model_name)) print("Training started on: {}".format(model.training_started_on)) print("Training completed on: {}".format(model.training_completed_on)) print("Recognized fields:") # Looping through the submodels, which contains the fields they were trained on for submodel in model.submodels: print("...The submodel has form type '{}'".format(submodel.form_type)) for name, field in submodel.fields.items(): print("...The model found field '{}' to have label '{}'".format( name, field.label ))
-
async
close
() → None[source]¶ Close the
FormTrainingClient
session.
-
async
delete_model
(model_id: str, **kwargs: Any) → None[source]¶ Mark model for deletion. Model artifacts will be permanently removed within a predetermined period.
- Parameters
model_id (str) – Model identifier.
- Return type
- Raises
Example:
await form_training_client.delete_model(model_id=custom_model.model_id) try: await form_training_client.get_custom_model(model_id=custom_model.model_id) except ResourceNotFoundError: print("Successfully deleted model with id {}".format(custom_model.model_id))
-
async
get_account_properties
(**kwargs: Any) → azure.ai.formrecognizer._models.AccountProperties[source]¶ Get information about the models on the form recognizer account.
- Returns
Summary of models on account - custom model count, custom model limit.
- Return type
- Raises
Example:
async with FormTrainingClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) as form_training_client: # First, we see how many custom models we have, and what our limit is account_properties = await form_training_client.get_account_properties() print("Our account has {} custom models, and we can have at most {} custom models\n".format( account_properties.custom_model_count, account_properties.custom_model_limit ))
Generate authorization for copying a custom model into the target Form Recognizer resource. This should be called by the target resource (where the model will be copied to) and the output can be passed as the target parameter into
begin_copy_model()
.- Parameters
resource_id (str) – Azure Resource Id of the target Form Recognizer resource where the model will be copied to.
resource_region (str) – Location of the target Form Recognizer resource. A valid Azure region name supported by Cognitive Services. For example, ‘westus’, ‘eastus’ etc. See https://azure.microsoft.com/global-infrastructure/services/?products=cognitive-services for the regional availability of Cognitive Services
- Returns
A dictionary with values for the copy authorization - “modelId”, “accessToken”, “resourceId”, “resourceRegion”, and “expirationDateTimeTicks”.
- Return type
- Raises
Example:
target_client = FormTrainingClient(endpoint=target_endpoint, credential=AzureKeyCredential(target_key)) async with target_client: target = await target_client.get_copy_authorization( resource_region=target_region, resource_id=target_resource_id ) # model ID that target client will use to access the model once copy is complete print("Model ID: {}".format(target["modelId"]))
-
async
get_custom_model
(model_id: str, **kwargs: Any) → azure.ai.formrecognizer._models.CustomFormModel[source]¶ Get a description of a custom model, including the types of forms it can recognize, and the fields it will extract for each form type.
- Parameters
model_id (str) – Model identifier.
- Returns
CustomFormModel
- Return type
- Raises
Example:
custom_model = await form_training_client.get_custom_model(model_id=model.model_id) print("\nModel ID: {}".format(custom_model.model_id)) print("Status: {}".format(custom_model.status)) print("Model name: {}".format(custom_model.model_name)) print("Is this a composed model?: {}".format(custom_model.properties.is_composed_model)) print("Training started on: {}".format(custom_model.training_started_on)) print("Training completed on: {}".format(custom_model.training_completed_on))
-
get_form_recognizer_client
(**kwargs: Any) → azure.ai.formrecognizer.aio._form_recognizer_client_async.FormRecognizerClient[source]¶ Get an instance of a FormRecognizerClient from FormTrainingClient.
- Return type
- Returns
A FormRecognizerClient
-
list_custom_models
(**kwargs: Any) → azure.core.async_paging.AsyncItemPaged[azure.ai.formrecognizer._models.CustomFormModelInfo][source]¶ List information for each model, including model id, model status, and when it was created and last modified.
- Returns
AsyncItemPaged[
CustomFormModelInfo
]- Return type
- Raises
Example:
custom_models = form_training_client.list_custom_models() print("We have models with the following IDs:") async for model in custom_models: print(model.model_id)