azure.ai.documentintelligence.aio package¶
- class azure.ai.documentintelligence.aio.AsyncAnalyzeDocumentLROPoller(client: Any, initial_response: Any, deserialization_callback: Callable[[Any], PollingReturnType_co], polling_method: AsyncPollingMethod[PollingReturnType_co])[source]¶
- continuation_token() str ¶
Return a continuation token that allows to restart the poller later.
- Returns:
An opaque continuation token
- Return type:
- done() bool ¶
Check status of the long running operation.
- Returns:
‘True’ if the process has completed, else ‘False’.
- Return type:
- classmethod from_continuation_token(polling_method: AsyncPollingMethod[PollingReturnType_co], continuation_token: str, **kwargs: Any) AsyncAnalyzeDocumentLROPoller [source]¶
- polling_method() AsyncPollingMethod[PollingReturnType_co] ¶
Return the polling method associated to this poller.
- Returns:
The polling method associated to this poller.
- Return type:
- async result() PollingReturnType_co ¶
Return the result of the long running operation.
- Returns:
The deserialized resource of the long running operation, if one is available.
- Return type:
any or None
- Raises:
HttpResponseError – Server problem with the query.
- async wait() None ¶
Wait on the long running operation.
- Raises:
HttpResponseError – Server problem with the query.
- class azure.ai.documentintelligence.aio.DocumentIntelligenceAdministrationClient(endpoint: str, credential: AzureKeyCredential | AsyncTokenCredential, **kwargs: Any)[source]¶
DocumentIntelligenceAdministrationClient.
- Parameters:
endpoint (str) – The Document Intelligence service endpoint. Required.
credential (AzureKeyCredential or AsyncTokenCredential) – Credential needed for the client to connect to Azure. Is either a AzureKeyCredential type or a TokenCredential type. Required.
- Keyword Arguments:
api_version (str) – The API version to use for this operation. Default value is “2024-11-30”. Note that overriding this default value may result in unsupported behavior.
- async authorize_classifier_copy(body: AuthorizeClassifierCopyRequest | MutableMapping[str, Any] | IO[bytes], **kwargs: Any) ClassifierCopyAuthorization ¶
Generates authorization to copy a document classifier to this location with specified classifierId and optional description.
- Parameters:
body (AuthorizeClassifierCopyRequest or JSON or IO[bytes]) – Authorize copy request parameters. Is one of the following types: AuthorizeClassifierCopyRequest, JSON, IO[bytes] Required.
- Returns:
ClassifierCopyAuthorization. The ClassifierCopyAuthorization is compatible with MutableMapping
- Return type:
- Raises:
- async authorize_model_copy(body: AuthorizeCopyRequest | MutableMapping[str, Any] | IO[bytes], **kwargs: Any) ModelCopyAuthorization ¶
Generates authorization to copy a document model to this location with specified modelId and optional description.
- Parameters:
body (AuthorizeCopyRequest or JSON or IO[bytes]) – Authorize copy request parameters. Is one of the following types: AuthorizeCopyRequest, JSON, IO[bytes] Required.
- Returns:
ModelCopyAuthorization. The ModelCopyAuthorization is compatible with MutableMapping
- Return type:
- Raises:
- async begin_build_classifier(body: BuildDocumentClassifierRequest | MutableMapping[str, Any] | IO[bytes], **kwargs: Any) AsyncLROPoller[DocumentClassifierDetails] ¶
Builds a custom document classifier.
- Parameters:
body (BuildDocumentClassifierRequest or JSON or IO[bytes]) – Build request parameters. Is one of the following types: BuildDocumentClassifierRequest, JSON, IO[bytes] Required.
- Returns:
An instance of AsyncLROPoller that returns DocumentClassifierDetails. The DocumentClassifierDetails is compatible with MutableMapping
- Return type:
- Raises:
- async begin_build_document_model(body: BuildDocumentModelRequest | MutableMapping[str, Any] | IO[bytes], **kwargs: Any) AsyncLROPoller[DocumentModelDetails] ¶
Builds a custom document analysis model.
- Parameters:
body (BuildDocumentModelRequest or JSON or IO[bytes]) – Build request parameters. Is one of the following types: BuildDocumentModelRequest, JSON, IO[bytes] Required.
- Returns:
An instance of AsyncLROPoller that returns DocumentModelDetails. The DocumentModelDetails is compatible with MutableMapping
- Return type:
- Raises:
- async begin_compose_model(body: ComposeDocumentModelRequest | MutableMapping[str, Any] | IO[bytes], **kwargs: Any) AsyncLROPoller[DocumentModelDetails] ¶
Creates a new document model from document types of existing document models.
- Parameters:
body (ComposeDocumentModelRequest or JSON or IO[bytes]) – Compose request parameters. Is one of the following types: ComposeDocumentModelRequest, JSON, IO[bytes] Required.
- Returns:
An instance of AsyncLROPoller that returns DocumentModelDetails. The DocumentModelDetails is compatible with MutableMapping
- Return type:
- Raises:
- async begin_copy_classifier_to(classifier_id: str, body: ClassifierCopyAuthorization | MutableMapping[str, Any] | IO[bytes], **kwargs: Any) AsyncLROPoller[DocumentClassifierDetails] ¶
Copies document classifier to the target resource, region, and classifierId.
- Parameters:
classifier_id (str) – Unique document classifier name. Required.
body (ClassifierCopyAuthorization or JSON or IO[bytes]) – Copy to request parameters. Is one of the following types: ClassifierCopyAuthorization, JSON, IO[bytes] Required.
- Returns:
An instance of AsyncLROPoller that returns DocumentClassifierDetails. The DocumentClassifierDetails is compatible with MutableMapping
- Return type:
- Raises:
- async begin_copy_model_to(model_id: str, body: ModelCopyAuthorization | MutableMapping[str, Any] | IO[bytes], **kwargs: Any) AsyncLROPoller[DocumentModelDetails] ¶
Copies document model to the target resource, region, and modelId.
- Parameters:
model_id (str) – Unique document model name. Required.
body (ModelCopyAuthorization or JSON or IO[bytes]) – Copy to request parameters. Is one of the following types: ModelCopyAuthorization, JSON, IO[bytes] Required.
- Returns:
An instance of AsyncLROPoller that returns DocumentModelDetails. The DocumentModelDetails is compatible with MutableMapping
- Return type:
- Raises:
- async delete_classifier(classifier_id: str, **kwargs: Any) None ¶
Deletes document classifier.
- Parameters:
classifier_id (str) – Unique document classifier name. Required.
- Returns:
None
- Return type:
None
- Raises:
- async delete_model(model_id: str, **kwargs: Any) None ¶
Deletes document model.
- Parameters:
model_id (str) – Unique document model name. Required.
- Returns:
None
- Return type:
None
- Raises:
- async get_classifier(classifier_id: str, **kwargs: Any) DocumentClassifierDetails ¶
Gets detailed document classifier information.
- Parameters:
classifier_id (str) – Unique document classifier name. Required.
- Returns:
DocumentClassifierDetails. The DocumentClassifierDetails is compatible with MutableMapping
- Return type:
- Raises:
- async get_model(model_id: str, **kwargs: Any) DocumentModelDetails ¶
Gets detailed document model information.
- Parameters:
model_id (str) – Unique document model name. Required.
- Returns:
DocumentModelDetails. The DocumentModelDetails is compatible with MutableMapping
- Return type:
- Raises:
- async get_operation(operation_id: str, **kwargs: Any) DocumentIntelligenceOperationDetails ¶
Gets operation info.
- Parameters:
operation_id (str) – Operation ID. Required.
- Returns:
DocumentIntelligenceOperationDetails. The DocumentIntelligenceOperationDetails is compatible with MutableMapping
- Return type:
- Raises:
- async get_resource_details(**kwargs: Any) DocumentIntelligenceResourceDetails ¶
Return information about the current resource.
- Returns:
DocumentIntelligenceResourceDetails. The DocumentIntelligenceResourceDetails is compatible with MutableMapping
- Return type:
- Raises:
- list_classifiers(**kwargs: Any) AsyncIterable[DocumentClassifierDetails] ¶
List all document classifiers.
- Returns:
An iterator like instance of DocumentClassifierDetails
- Return type:
- Raises:
- list_models(**kwargs: Any) AsyncIterable[DocumentModelDetails] ¶
List all document models.
- Returns:
An iterator like instance of DocumentModelDetails
- Return type:
- Raises:
- list_operations(**kwargs: Any) AsyncIterable[DocumentIntelligenceOperationDetails] ¶
Lists all operations.
- Returns:
An iterator like instance of DocumentIntelligenceOperationDetails
- Return type:
- Raises:
- send_request(request: HttpRequest, *, stream: bool = False, **kwargs: Any) Awaitable[AsyncHttpResponse] [source]¶
Runs the network request through the client’s chained policies.
>>> from azure.core.rest import HttpRequest >>> request = HttpRequest("GET", "https://www.example.org/") <HttpRequest [GET], url: 'https://www.example.org/'> >>> response = await client.send_request(request) <AsyncHttpResponse: 200 OK>
For more information on this code flow, see https://aka.ms/azsdk/dpcodegen/python/send_request
- Parameters:
request (HttpRequest) – The network request you want to make. Required.
- Keyword Arguments:
stream (bool) – Whether the response payload will be streamed. Defaults to False.
- Returns:
The response of your network call. Does not do error handling on your response.
- Return type:
- class azure.ai.documentintelligence.aio.DocumentIntelligenceClient(endpoint: str, credential: AzureKeyCredential | AsyncTokenCredential, **kwargs: Any)[source]¶
DocumentIntelligenceClient.
- Parameters:
endpoint (str) – The Document Intelligence service endpoint. Required.
credential (AzureKeyCredential or AsyncTokenCredential) – Credential needed for the client to connect to Azure. Is either a AzureKeyCredential type or a TokenCredential type. Required.
- Keyword Arguments:
api_version (str) – The API version to use for this operation. Default value is “2024-11-30”. Note that overriding this default value may result in unsupported behavior.
- async begin_analyze_batch_documents(model_id: str, body: AnalyzeBatchDocumentsRequest | MutableMapping[str, Any] | IO[bytes], *, pages: str | None = None, locale: str | None = None, string_index_type: str | StringIndexType | None = None, features: List[str | DocumentAnalysisFeature] | None = None, query_fields: List[str] | None = None, output_content_format: str | DocumentContentFormat | None = None, output: List[str | AnalyzeOutputOption] | None = None, **kwargs: Any) AsyncLROPoller[AnalyzeBatchResult] ¶
Analyzes batch documents with document model.
- Parameters:
model_id (str) – Unique document model name. Required.
body (AnalyzeBatchDocumentsRequest or JSON or IO[bytes]) – Analyze batch request parameters. Is one of the following types: AnalyzeBatchDocumentsRequest, JSON, IO[bytes] Required.
- Keyword Arguments:
pages (str) – 1-based page numbers to analyze. Ex. “1-3,5,7-9”. Default value is None.
locale (str) – Locale hint for text recognition and document analysis. Value may contain only the language code (ex. “en”, “fr”) or BCP 47 language tag (ex. “en-US”). Default value is None.
string_index_type (str or StringIndexType) – Method used to compute string offset and length. Known values are: “textElements”, “unicodeCodePoint”, and “utf16CodeUnit”. Default value is None.
features (list[str or DocumentAnalysisFeature]) – List of optional analysis features. Default value is None.
query_fields (list[str]) – List of additional fields to extract. Ex. “NumberOfGuests,StoreNumber”. Default value is None.
output_content_format (str or DocumentContentFormat) – Format of the analyze result top-level content. Known values are: “text” and “markdown”. Default value is None.
output (list[str or AnalyzeOutputOption]) – Additional outputs to generate during analysis. Default value is None.
- Returns:
An instance of AsyncLROPoller that returns AnalyzeBatchResult. The AnalyzeBatchResult is compatible with MutableMapping
- Return type:
- Raises:
- async begin_analyze_document(model_id: str, body: AnalyzeDocumentRequest | MutableMapping[str, Any] | IO[bytes], *, pages: str | None = None, locale: str | None = None, string_index_type: str | StringIndexType | None = None, features: List[str | DocumentAnalysisFeature] | None = None, query_fields: List[str] | None = None, output_content_format: str | DocumentContentFormat | None = None, output: List[str | AnalyzeOutputOption] | None = None, **kwargs: Any) AsyncAnalyzeDocumentLROPoller[AnalyzeResult] ¶
Analyzes document with document model.
- Parameters:
model_id (str) – Unique document model name. Required.
body (AnalyzeDocumentRequest or JSON or IO[bytes]) – Analyze request parameters. Is one of the following types: AnalyzeDocumentRequest, JSON, IO[bytes]. Required.
- Keyword Arguments:
pages (str) – 1-based page numbers to analyze. Ex. “1-3,5,7-9”. Default value is None.
locale (str) – Locale hint for text recognition and document analysis. Value may contain only the language code (ex. “en”, “fr”) or BCP 47 language tag (ex. “en-US”). Default value is None.
string_index_type (str or StringIndexType) – Method used to compute string offset and length. Known values are: “textElements”, “unicodeCodePoint”, and “utf16CodeUnit”. Default value is None.
features (list[str or DocumentAnalysisFeature]) – List of optional analysis features. Default value is None.
query_fields (list[str]) – List of additional fields to extract. Ex. “NumberOfGuests,StoreNumber”. Default value is None.
output_content_format (str or DocumentContentFormat) – Format of the analyze result top-level content. Known values are: “text” and “markdown”. Default value is None.
output (list[str or AnalyzeOutputOption]) – Additional outputs to generate during analysis. Default value is None.
- Returns:
An instance of AsyncAnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible with MutableMapping
- Return type:
- Raises:
- async begin_classify_document(classifier_id: str, body: ClassifyDocumentRequest | MutableMapping[str, Any] | IO[bytes], *, string_index_type: str | StringIndexType | None = None, split: str | SplitMode | None = None, pages: str | None = None, **kwargs: Any) AsyncLROPoller[AnalyzeResult] ¶
Classifies document with document classifier.
- Parameters:
classifier_id (str) – Unique document classifier name. Required.
body (ClassifyDocumentRequest or JSON or IO[bytes]) – Classify request parameters. Is one of the following types: ClassifyDocumentRequest, JSON, IO[bytes] Required.
- Keyword Arguments:
string_index_type (str or StringIndexType) – Method used to compute string offset and length. Known values are: “textElements”, “unicodeCodePoint”, and “utf16CodeUnit”. Default value is None.
split (str or SplitMode) – Document splitting mode. Known values are: “auto”, “none”, and “perPage”. Default value is None.
pages (str) – 1-based page numbers to analyze. Ex. “1-3,5,7-9”. Default value is None.
- Returns:
An instance of AsyncLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible with MutableMapping
- Return type:
- Raises:
- async delete_analyze_batch_result(model_id: str, result_id: str, **kwargs: Any) None ¶
Mark the batch document analysis result for deletion.
- Parameters:
- Returns:
None
- Return type:
None
- Raises:
- async delete_analyze_result(model_id: str, result_id: str, **kwargs: Any) None ¶
Mark the result of document analysis for deletion.
- Parameters:
- Returns:
None
- Return type:
None
- Raises:
- async get_analyze_batch_result(continuation_token: str) AsyncLROPoller[AnalyzeBatchResult] ¶
Gets the result of batch document analysis.
- Parameters:
continuation_token (str) – An opaque continuation token. Required.
- Returns:
An instance of AsyncLROPoller that returns AnalyzeBatchResult. The AnalyzeBatchResult is compatible with MutableMapping
- Return type:
- Raises:
- async get_analyze_result_figure(model_id: str, result_id: str, figure_id: str, **kwargs: Any) AsyncIterator[bytes] ¶
Gets the generated cropped image of specified figure from document analysis.
- Parameters:
- Returns:
AsyncIterator[bytes]
- Return type:
AsyncIterator[bytes]
- Raises:
- async get_analyze_result_pdf(model_id: str, result_id: str, **kwargs: Any) AsyncIterator[bytes] ¶
Gets the generated searchable PDF output from document analysis.
- Parameters:
- Returns:
AsyncIterator[bytes]
- Return type:
AsyncIterator[bytes]
- Raises:
- list_analyze_batch_results(model_id: str, **kwargs: Any) AsyncIterable[AnalyzeBatchOperation] ¶
List batch document analysis results.
- Parameters:
model_id (str) – Unique document model name. Required.
- Returns:
An iterator like instance of AnalyzeBatchOperation
- Return type:
- Raises:
- send_request(request: HttpRequest, *, stream: bool = False, **kwargs: Any) Awaitable[AsyncHttpResponse] [source]¶
Runs the network request through the client’s chained policies.
>>> from azure.core.rest import HttpRequest >>> request = HttpRequest("GET", "https://www.example.org/") <HttpRequest [GET], url: 'https://www.example.org/'> >>> response = await client.send_request(request) <AsyncHttpResponse: 200 OK>
For more information on this code flow, see https://aka.ms/azsdk/dpcodegen/python/send_request
- Parameters:
request (HttpRequest) – The network request you want to make. Required.
- Keyword Arguments:
stream (bool) – Whether the response payload will be streamed. Defaults to False.
- Returns:
The response of your network call. Does not do error handling on your response.
- Return type: