Source code for azure.ai.documentintelligence._operations._patch

# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""Customize generated code here.

Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize
"""
import sys
import re
import io
from typing import Any, Callable, Dict, IO, List, Optional, TypeVar, Union, Mapping, cast, overload

from azure.core.pipeline import PipelineResponse
from azure.core.polling import LROPoller, NoPolling, PollingMethod
from azure.core.polling.base_polling import LROBasePolling
from azure.core.rest import HttpRequest, HttpResponse
from azure.core.tracing.decorator import distributed_trace
from azure.core.utils import case_insensitive_dict

from ._operations import (
    DocumentIntelligenceClientOperationsMixin as GeneratedDIClientOps,
    DocumentIntelligenceAdministrationClientOperationsMixin as GeneratedDIAdminClientOps,
)
from .. import models as _models
from .._model_base import _deserialize

if sys.version_info >= (3, 9):
    from collections.abc import MutableMapping
else:
    from typing import MutableMapping  # type: ignore
JSON = MutableMapping[str, Any]  # pylint: disable=unsubscriptable-object
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
PollingReturnType_co = TypeVar("PollingReturnType_co", covariant=True)


def _parse_operation_id(operation_location_header):
    regex = "[^:]+://[^/]+/documentintelligence/.+/([^?/]+)"
    return re.match(regex, operation_location_header).group(1)


[docs] class AnalyzeDocumentLROPoller(LROPoller[PollingReturnType_co]): @property def details(self) -> Mapping[str, Any]: """Returns metadata associated with the long-running operation. :return: Returns metadata associated with the long-running operation. :rtype: Mapping[str, Any] """ return { "operation_id": _parse_operation_id( self.polling_method()._initial_response.http_response.headers["Operation-Location"] # type: ignore # pylint: disable=protected-access ), }
[docs] @classmethod def from_continuation_token( cls, polling_method: PollingMethod[PollingReturnType_co], continuation_token: str, **kwargs: Any ) -> "AnalyzeDocumentLROPoller": ( client, initial_response, deserialization_callback, ) = polling_method.from_continuation_token(continuation_token, **kwargs) return cls(client, initial_response, deserialization_callback, polling_method)
class DocumentIntelligenceAdministrationClientOperationsMixin( GeneratedDIAdminClientOps ): # pylint: disable=name-too-long @distributed_trace def begin_build_classifier( self, body: Union[_models.BuildDocumentClassifierRequest, JSON, IO[bytes]], **kwargs: Any ) -> LROPoller[_models.DocumentClassifierDetails]: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = kwargs.pop("params", {}) or {} content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DocumentClassifierDetails] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._build_classifier_initial( body=body, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs, ) raw_result.http_response.read() # type: ignore kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): response_headers = {} response = pipeline_response.http_response response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) response_headers["Operation-Location"] = self._deserialize( "str", response.headers.get("Operation-Location") ) deserialized = _deserialize(_models.DocumentClassifierDetails, response.json()) if cls: return cls(pipeline_response, deserialized, response_headers) # type: ignore return deserialized path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: PollingMethod = cast( PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller[_models.DocumentClassifierDetails].from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller[_models.DocumentClassifierDetails]( self._client, raw_result, get_long_running_output, polling_method # type: ignore ) @distributed_trace def begin_build_document_model( self, body: Union[_models.BuildDocumentModelRequest, JSON, IO[bytes]], **kwargs: Any ) -> LROPoller[_models.DocumentModelDetails]: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = kwargs.pop("params", {}) or {} content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DocumentModelDetails] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._build_document_model_initial( body=body, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs, ) raw_result.http_response.read() # type: ignore kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): response_headers = {} response = pipeline_response.http_response response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) response_headers["Operation-Location"] = self._deserialize( "str", response.headers.get("Operation-Location") ) deserialized = _deserialize(_models.DocumentModelDetails, response.json()) if cls: return cls(pipeline_response, deserialized, response_headers) # type: ignore return deserialized path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: PollingMethod = cast( PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller[_models.DocumentModelDetails].from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller[_models.DocumentModelDetails]( self._client, raw_result, get_long_running_output, polling_method # type: ignore ) @distributed_trace def begin_compose_model( self, body: Union[_models.ComposeDocumentModelRequest, JSON, IO[bytes]], **kwargs: Any ) -> LROPoller[_models.DocumentModelDetails]: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = kwargs.pop("params", {}) or {} content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DocumentModelDetails] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._compose_model_initial( body=body, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs, ) raw_result.http_response.read() # type: ignore kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): response_headers = {} response = pipeline_response.http_response response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) response_headers["Operation-Location"] = self._deserialize( "str", response.headers.get("Operation-Location") ) deserialized = _deserialize(_models.DocumentModelDetails, response.json()) if cls: return cls(pipeline_response, deserialized, response_headers) # type: ignore return deserialized path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: PollingMethod = cast( PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller[_models.DocumentModelDetails].from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller[_models.DocumentModelDetails]( self._client, raw_result, get_long_running_output, polling_method # type: ignore ) @distributed_trace def begin_copy_model_to( self, model_id: str, body: Union[_models.ModelCopyAuthorization, JSON, IO[bytes]], **kwargs: Any ) -> LROPoller[_models.DocumentModelDetails]: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = kwargs.pop("params", {}) or {} content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DocumentModelDetails] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._copy_model_to_initial( model_id=model_id, body=body, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs, ) raw_result.http_response.read() # type: ignore kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): response_headers = {} response = pipeline_response.http_response response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) response_headers["Operation-Location"] = self._deserialize( "str", response.headers.get("Operation-Location") ) deserialized = _deserialize(_models.DocumentModelDetails, response.json()) if cls: return cls(pipeline_response, deserialized, response_headers) # type: ignore return deserialized path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: PollingMethod = cast( PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller[_models.DocumentModelDetails].from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller[_models.DocumentModelDetails]( self._client, raw_result, get_long_running_output, polling_method # type: ignore ) @distributed_trace def begin_copy_classifier_to( self, classifier_id: str, body: Union[_models.ClassifierCopyAuthorization, JSON, IO[bytes]], **kwargs: Any, ) -> LROPoller[_models.DocumentClassifierDetails]: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = kwargs.pop("params", {}) or {} content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DocumentClassifierDetails] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._copy_classifier_to_initial( classifier_id=classifier_id, body=body, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs, ) raw_result.http_response.read() # type: ignore kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): response_headers = {} response = pipeline_response.http_response response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) response_headers["Operation-Location"] = self._deserialize( "str", response.headers.get("Operation-Location") ) deserialized = _deserialize(_models.DocumentClassifierDetails, response.json()) if cls: return cls(pipeline_response, deserialized, response_headers) # type: ignore return deserialized path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: PollingMethod = cast( PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller[_models.DocumentClassifierDetails].from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller[_models.DocumentClassifierDetails]( self._client, raw_result, get_long_running_output, polling_method # type: ignore ) class DocumentIntelligenceClientOperationsMixin(GeneratedDIClientOps): # pylint: disable=name-too-long @overload def begin_analyze_document( self, model_id: str, body: _models.AnalyzeDocumentRequest, *, pages: Optional[str] = None, locale: Optional[str] = None, string_index_type: Optional[Union[str, _models.StringIndexType]] = None, features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, query_fields: Optional[List[str]] = None, output_content_format: Optional[Union[str, _models.DocumentContentFormat]] = None, output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, content_type: str = "application/json", **kwargs: Any, ) -> AnalyzeDocumentLROPoller[_models.AnalyzeResult]: """Analyzes document with document model. :param model_id: Unique document model name. Required. :type model_id: str :param body: Analyze request parameters. Default value is None. :type body: ~azure.ai.documentintelligence.models.AnalyzeDocumentRequest :keyword pages: 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain only the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is None. :paramtype locale: str :keyword string_index_type: Method used to compute string offset and length. Known values are: "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType :keyword features: List of optional analysis features. Default value is None. :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". Default value is None. :paramtype query_fields: list[str] :keyword output_content_format: Format of the analyze result top-level content. Known values are: "text" and "markdown". Default value is None. :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.DocumentContentFormat :keyword output: Additional outputs to generate during analysis. Default value is None. :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :return: An instance of AnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible with MutableMapping :rtype: AnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] :raises ~azure.core.exceptions.HttpResponseError: """ @overload def begin_analyze_document( self, model_id: str, body: JSON, *, pages: Optional[str] = None, locale: Optional[str] = None, string_index_type: Optional[Union[str, _models.StringIndexType]] = None, features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, query_fields: Optional[List[str]] = None, output_content_format: Optional[Union[str, _models.DocumentContentFormat]] = None, output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, content_type: str = "application/json", **kwargs: Any, ) -> AnalyzeDocumentLROPoller[_models.AnalyzeResult]: """Analyzes document with document model. :param model_id: Unique document model name. Required. :type model_id: str :param body: Analyze request parameters. Required. :type body: JSON :keyword pages: 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain only the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is None. :paramtype locale: str :keyword string_index_type: Method used to compute string offset and length. Known values are: "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType :keyword features: List of optional analysis features. Default value is None. :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". Default value is None. :paramtype query_fields: list[str] :keyword output_content_format: Format of the analyze result top-level content. Known values are: "text" and "markdown". Default value is None. :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.DocumentContentFormat :keyword output: Additional outputs to generate during analysis. Default value is None. :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :return: An instance of AnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible with MutableMapping :rtype: AnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] :raises ~azure.core.exceptions.HttpResponseError: """ @overload def begin_analyze_document( self, model_id: str, body: IO[bytes], *, pages: Optional[str] = None, locale: Optional[str] = None, string_index_type: Optional[Union[str, _models.StringIndexType]] = None, features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, query_fields: Optional[List[str]] = None, output_content_format: Optional[Union[str, _models.DocumentContentFormat]] = None, output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, content_type: str = "application/json", **kwargs: Any, ) -> AnalyzeDocumentLROPoller[_models.AnalyzeResult]: """Analyzes document with document model. :param model_id: Unique document model name. Required. :type model_id: str :param body: Analyze request parameters. Required. :type body: IO[bytes] :keyword pages: 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain only the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is None. :paramtype locale: str :keyword string_index_type: Method used to compute string offset and length. Known values are: "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType :keyword features: List of optional analysis features. Default value is None. :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". Default value is None. :paramtype query_fields: list[str] :keyword output_content_format: Format of the analyze result top-level content. Known values are: "text" and "markdown". Default value is None. :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.DocumentContentFormat :keyword output: Additional outputs to generate during analysis. Default value is None. :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :return: An instance of AnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible with MutableMapping :rtype: AnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace def begin_analyze_document( self, model_id: str, body: Union[_models.AnalyzeDocumentRequest, JSON, IO[bytes]], *, pages: Optional[str] = None, locale: Optional[str] = None, string_index_type: Optional[Union[str, _models.StringIndexType]] = None, features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, query_fields: Optional[List[str]] = None, output_content_format: Optional[Union[str, _models.DocumentContentFormat]] = None, output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, **kwargs: Any, ) -> AnalyzeDocumentLROPoller[_models.AnalyzeResult]: """Analyzes document with document model. :param model_id: Unique document model name. Required. :type model_id: str :param body: Analyze request parameters. Is one of the following types: AnalyzeDocumentRequest, JSON, IO[bytes] Required. :type body: ~azure.ai.documentintelligence.models.AnalyzeDocumentRequest or JSON or IO[bytes] :keyword pages: 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain only the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is None. :paramtype locale: str :keyword string_index_type: Method used to compute string offset and length. Known values are: "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType :keyword features: List of optional analysis features. Default value is None. :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". Default value is None. :paramtype query_fields: list[str] :keyword output_content_format: Format of the analyze result top-level content. Known values are: "text" and "markdown". Default value is None. :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.DocumentContentFormat :keyword output: Additional outputs to generate during analysis. Default value is None. :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] :return: An instance of AnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible with MutableMapping :rtype: AnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = kwargs.pop("params", {}) or {} content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("content-type", None)) cls: ClsType[_models.AnalyzeResult] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: if isinstance(body, (bytes, io.BytesIO, io.BufferedReader)): content_type = "application/octet-stream" raw_result = self._analyze_document_initial( model_id=model_id, body=body, pages=pages, locale=locale, string_index_type=string_index_type, features=features, query_fields=query_fields, output_content_format=output_content_format, output=output, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs, ) raw_result.http_response.read() # type: ignore kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): response_headers = {} response = pipeline_response.http_response response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) response_headers["Operation-Location"] = self._deserialize( "str", response.headers.get("Operation-Location") ) deserialized = _deserialize(_models.AnalyzeResult, response.json().get("analyzeResult")) if cls: return cls(pipeline_response, deserialized, response_headers) # type: ignore return deserialized path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: PollingMethod = cast( PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return AnalyzeDocumentLROPoller[_models.AnalyzeResult].from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AnalyzeDocumentLROPoller[_models.AnalyzeResult]( self._client, raw_result, get_long_running_output, polling_method # type: ignore ) @distributed_trace def begin_classify_document( self, classifier_id: str, body: Union[_models.ClassifyDocumentRequest, JSON, IO[bytes]], *, string_index_type: Optional[Union[str, _models.StringIndexType]] = None, split: Optional[Union[str, _models.SplitMode]] = None, pages: Optional[str] = None, **kwargs: Any, ) -> LROPoller[_models.AnalyzeResult]: """Classifies document with document classifier. :param classifier_id: Unique document classifier name. Required. :type classifier_id: str :param body: Classify request parameters. Is one of the following types: ClassifyDocumentRequest, JSON, IO[bytes] Required. :type body: ~azure.ai.documentintelligence.models.ClassifyDocumentRequest or JSON or IO[bytes] :keyword string_index_type: Method used to compute string offset and length. Known values are: "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType :keyword split: Document splitting mode. Known values are: "auto", "none", and "perPage". Default value is None. :paramtype split: str or ~azure.ai.documentintelligence.models.SplitMode :keyword pages: 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :return: An instance of LROPoller that returns AnalyzeResult. The AnalyzeResult is compatible with MutableMapping :rtype: ~azure.core.polling.LROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("content-type", None)) if isinstance(body, (bytes, io.BytesIO, io.BufferedReader)): content_type = "application/octet-stream" return super().begin_classify_document( # type: ignore[arg-type, misc] classifier_id=classifier_id, body=body, # type: ignore[arg-type] content_type=content_type, # type: ignore[arg-type] string_index_type=string_index_type, split=split, pages=pages, **kwargs, ) @distributed_trace def get_analyze_batch_result( # type: ignore[override] # pylint: disable=arguments-differ self, continuation_token: str ) -> LROPoller[_models.AnalyzeBatchResult]: """Gets the result of batch document analysis. :param str continuation_token: An opaque continuation token. Required. :return: An instance of LROPoller that returns AnalyzeBatchResult. The AnalyzeBatchResult is compatible with MutableMapping :rtype: ~azure.core.polling.LROPoller[~azure.ai.documentintelligence.models.AnalyzeBatchResult] :raises ~azure.core.exceptions.HttpResponseError: """ return self.begin_analyze_batch_documents( # type: ignore[call-overload] None, None, continuation_token=continuation_token ) __all__: List[str] = [ "DocumentIntelligenceClientOperationsMixin", "DocumentIntelligenceAdministrationClientOperationsMixin", ] # Add all objects you want publicly available to users at this package level def patch_sdk(): """Do not remove from this file. `patch_sdk` is a last resort escape hatch that allows you to do customizations you can't accomplish using the techniques described in https://aka.ms/azsdk/python/dpcodegen/python/customize """