Source code for azure.ai.documentintelligence.aio._operations._patch

# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""Customize generated code here.

Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize
"""
import sys
from typing import Any, Callable, Dict, IO, List, Optional, TypeVar, Union, Mapping, cast, overload

from azure.core.pipeline import PipelineResponse
from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
from azure.core.polling.async_base_polling import AsyncLROBasePolling
from azure.core.rest import AsyncHttpResponse, HttpRequest
from azure.core.tracing.decorator_async import distributed_trace_async
from azure.core.utils import case_insensitive_dict

from ._operations import (
    DocumentIntelligenceClientOperationsMixin as GeneratedDIClientOps,
    DocumentIntelligenceAdministrationClientOperationsMixin as GeneratedDIAdminClientOps,
)
from ... import models as _models
from ..._model_base import _deserialize
from ..._operations._patch import PollingReturnType_co, _parse_operation_id, _finished

if sys.version_info >= (3, 9):
    from collections.abc import MutableMapping
else:
    from typing import MutableMapping  # type: ignore  # pylint: disable=ungrouped-imports
JSON = MutableMapping[str, Any]  # pylint: disable=unsubscriptable-object
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]


[docs] class AsyncAnalyzeDocumentLROPoller(AsyncLROPoller[PollingReturnType_co]): @property def details(self) -> Mapping[str, Any]: """Returns metadata associated with the long-running operation. :return: Returns metadata associated with the long-running operation. :rtype: Mapping[str, Any] """ return { "operation_id": _parse_operation_id( self.polling_method()._initial_response.http_response.headers["Operation-Location"] # type: ignore # pylint: disable=protected-access ), }
[docs] @classmethod def from_continuation_token( cls, polling_method: AsyncPollingMethod[PollingReturnType_co], continuation_token: str, **kwargs: Any ) -> "AsyncAnalyzeDocumentLROPoller": ( client, initial_response, deserialization_callback, ) = polling_method.from_continuation_token(continuation_token, **kwargs) return cls(client, initial_response, deserialization_callback, polling_method)
class AsyncAnalyzeBatchDocumentsLROPollingMethod(AsyncLROBasePolling): # pylint: disable=name-too-long def finished(self) -> bool: """Is this polling finished? :return: Whether the polling finished or not. :rtype: bool """ return _finished(self.status()) class DocumentIntelligenceAdministrationClientOperationsMixin( GeneratedDIAdminClientOps ): # pylint: disable=name-too-long @distributed_trace_async async def begin_build_classifier( # type: ignore[override] self, build_request: Union[_models.BuildDocumentClassifierRequest, JSON, IO[bytes]], **kwargs: Any ) -> AsyncLROPoller[_models.DocumentClassifierDetails]: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = kwargs.pop("params", {}) or {} content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DocumentClassifierDetails] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = await self._build_classifier_initial( # type: ignore build_request=build_request, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): response_headers = {} response = pipeline_response.http_response response_headers["Operation-Location"] = self._deserialize( "str", response.headers.get("Operation-Location") ) deserialized = _deserialize(_models.DocumentClassifierDetails, response.json()) if cls: return cls(pipeline_response, deserialized, response_headers) # type: ignore return deserialized path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: AsyncPollingMethod = cast( AsyncPollingMethod, AsyncLROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs), ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller[_models.DocumentClassifierDetails].from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller[_models.DocumentClassifierDetails]( self._client, raw_result, get_long_running_output, polling_method # type: ignore ) @distributed_trace_async async def begin_build_document_model( # type: ignore[override] self, build_request: Union[_models.BuildDocumentModelRequest, JSON, IO[bytes]], **kwargs: Any ) -> AsyncLROPoller[_models.DocumentModelDetails]: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = kwargs.pop("params", {}) or {} content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DocumentModelDetails] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = await self._build_document_model_initial( # type: ignore build_request=build_request, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): response_headers = {} response = pipeline_response.http_response response_headers["Operation-Location"] = self._deserialize( "str", response.headers.get("Operation-Location") ) deserialized = _deserialize(_models.DocumentModelDetails, response.json()) if cls: return cls(pipeline_response, deserialized, response_headers) # type: ignore return deserialized path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: AsyncPollingMethod = cast( AsyncPollingMethod, AsyncLROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs), ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller[_models.DocumentModelDetails].from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller[_models.DocumentModelDetails]( self._client, raw_result, get_long_running_output, polling_method # type: ignore ) @distributed_trace_async async def begin_compose_model( # type: ignore[override] self, compose_request: Union[_models.ComposeDocumentModelRequest, JSON, IO[bytes]], **kwargs: Any ) -> AsyncLROPoller[_models.DocumentModelDetails]: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = kwargs.pop("params", {}) or {} content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DocumentModelDetails] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = await self._compose_model_initial( # type: ignore compose_request=compose_request, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): response_headers = {} response = pipeline_response.http_response response_headers["Operation-Location"] = self._deserialize( "str", response.headers.get("Operation-Location") ) deserialized = _deserialize(_models.DocumentModelDetails, response.json()) if cls: return cls(pipeline_response, deserialized, response_headers) # type: ignore return deserialized path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: AsyncPollingMethod = cast( AsyncPollingMethod, AsyncLROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs), ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller[_models.DocumentModelDetails].from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller[_models.DocumentModelDetails]( self._client, raw_result, get_long_running_output, polling_method # type: ignore ) @distributed_trace_async async def begin_copy_model_to( # type: ignore[override] self, model_id: str, copy_to_request: Union[_models.CopyAuthorization, JSON, IO[bytes]], **kwargs: Any ) -> AsyncLROPoller[_models.DocumentModelDetails]: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = kwargs.pop("params", {}) or {} content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DocumentModelDetails] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = await self._copy_model_to_initial( # type: ignore model_id=model_id, copy_to_request=copy_to_request, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): response_headers = {} response = pipeline_response.http_response response_headers["Operation-Location"] = self._deserialize( "str", response.headers.get("Operation-Location") ) deserialized = _deserialize(_models.DocumentModelDetails, response.json()) if cls: return cls(pipeline_response, deserialized, response_headers) # type: ignore return deserialized path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: AsyncPollingMethod = cast( AsyncPollingMethod, AsyncLROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs), ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller[_models.DocumentModelDetails].from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller[_models.DocumentModelDetails]( self._client, raw_result, get_long_running_output, polling_method # type: ignore ) class DocumentIntelligenceClientOperationsMixin(GeneratedDIClientOps): # pylint: disable=name-too-long @overload async def begin_analyze_document( self, model_id: str, analyze_request: Optional[_models.AnalyzeDocumentRequest] = None, *, pages: Optional[str] = None, locale: Optional[str] = None, string_index_type: Optional[Union[str, _models.StringIndexType]] = None, features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, query_fields: Optional[List[str]] = None, output_content_format: Optional[Union[str, _models.ContentFormat]] = None, output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, content_type: str = "application/json", **kwargs: Any ) -> AsyncAnalyzeDocumentLROPoller[_models.AnalyzeResult]: """Analyzes document with document model. :param model_id: Unique document model name. Required. :type model_id: str :param analyze_request: Analyze request parameters. Default value is None. :type analyze_request: ~azure.ai.documentintelligence.models.AnalyzeDocumentRequest :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain only the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is None. :paramtype locale: str :keyword string_index_type: Method used to compute string offset and length. Known values are: "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType :keyword features: List of optional analysis features. Default value is None. :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". Default value is None. :paramtype query_fields: list[str] :keyword output_content_format: Format of the analyze result top-level content. Known values are: "text" and "markdown". Default value is None. :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.ContentFormat :keyword output: Additional outputs to generate during analysis. Default value is None. :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :return: An instance of AsyncAnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible with MutableMapping :rtype: AsyncAnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def begin_analyze_document( self, model_id: str, analyze_request: Optional[JSON] = None, *, pages: Optional[str] = None, locale: Optional[str] = None, string_index_type: Optional[Union[str, _models.StringIndexType]] = None, features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, query_fields: Optional[List[str]] = None, output_content_format: Optional[Union[str, _models.ContentFormat]] = None, output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, content_type: str = "application/json", **kwargs: Any ) -> AsyncAnalyzeDocumentLROPoller[_models.AnalyzeResult]: """Analyzes document with document model. :param model_id: Unique document model name. Required. :type model_id: str :param analyze_request: Analyze request parameters. Default value is None. :type analyze_request: JSON :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain only the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is None. :paramtype locale: str :keyword string_index_type: Method used to compute string offset and length. Known values are: "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType :keyword features: List of optional analysis features. Default value is None. :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". Default value is None. :paramtype query_fields: list[str] :keyword output_content_format: Format of the analyze result top-level content. Known values are: "text" and "markdown". Default value is None. :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.ContentFormat :keyword output: Additional outputs to generate during analysis. Default value is None. :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :return: An instance of AsyncAnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible with MutableMapping :rtype: AsyncAnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def begin_analyze_document( self, model_id: str, analyze_request: Optional[IO[bytes]] = None, *, pages: Optional[str] = None, locale: Optional[str] = None, string_index_type: Optional[Union[str, _models.StringIndexType]] = None, features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, query_fields: Optional[List[str]] = None, output_content_format: Optional[Union[str, _models.ContentFormat]] = None, output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, content_type: str = "application/json", **kwargs: Any ) -> AsyncAnalyzeDocumentLROPoller[_models.AnalyzeResult]: """Analyzes document with document model. :param model_id: Unique document model name. Required. :type model_id: str :param analyze_request: Analyze request parameters. Default value is None. :type analyze_request: IO[bytes] :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain only the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is None. :paramtype locale: str :keyword string_index_type: Method used to compute string offset and length. Known values are: "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType :keyword features: List of optional analysis features. Default value is None. :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". Default value is None. :paramtype query_fields: list[str] :keyword output_content_format: Format of the analyze result top-level content. Known values are: "text" and "markdown". Default value is None. :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.ContentFormat :keyword output: Additional outputs to generate during analysis. Default value is None. :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :return: An instance of AsyncAnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible with MutableMapping :rtype: AsyncAnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def begin_analyze_document( # type: ignore[override] self, model_id: str, analyze_request: Optional[Union[_models.AnalyzeDocumentRequest, JSON, IO[bytes]]] = None, *, pages: Optional[str] = None, locale: Optional[str] = None, string_index_type: Optional[Union[str, _models.StringIndexType]] = None, features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, query_fields: Optional[List[str]] = None, output_content_format: Optional[Union[str, _models.ContentFormat]] = None, output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, **kwargs: Any ) -> AsyncAnalyzeDocumentLROPoller[_models.AnalyzeResult]: """Analyzes document with document model. :param model_id: Unique document model name. Required. :type model_id: str :param analyze_request: Analyze request parameters. Is one of the following types: AnalyzeDocumentRequest, JSON, IO[bytes] Default value is None. :type analyze_request: ~azure.ai.documentintelligence.models.AnalyzeDocumentRequest or JSON or IO[bytes] :keyword pages: Range of 1-based page numbers to analyze. Ex. "1-3,5,7-9". Default value is None. :paramtype pages: str :keyword locale: Locale hint for text recognition and document analysis. Value may contain only the language code (ex. "en", "fr") or BCP 47 language tag (ex. "en-US"). Default value is None. :paramtype locale: str :keyword string_index_type: Method used to compute string offset and length. Known values are: "textElements", "unicodeCodePoint", and "utf16CodeUnit". Default value is None. :paramtype string_index_type: str or ~azure.ai.documentintelligence.models.StringIndexType :keyword features: List of optional analysis features. Default value is None. :paramtype features: list[str or ~azure.ai.documentintelligence.models.DocumentAnalysisFeature] :keyword query_fields: List of additional fields to extract. Ex. "NumberOfGuests,StoreNumber". Default value is None. :paramtype query_fields: list[str] :keyword output_content_format: Format of the analyze result top-level content. Known values are: "text" and "markdown". Default value is None. :paramtype output_content_format: str or ~azure.ai.documentintelligence.models.ContentFormat :keyword output: Additional outputs to generate during analysis. Default value is None. :paramtype output: list[str or ~azure.ai.documentintelligence.models.AnalyzeOutputOption] :return: An instance of AsyncAnalyzeDocumentLROPoller that returns AnalyzeResult. The AnalyzeResult is compatible with MutableMapping :rtype: AsyncAnalyzeDocumentLROPoller[~azure.ai.documentintelligence.models.AnalyzeResult] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = kwargs.pop("params", {}) or {} content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("content-type", None)) cls: ClsType[_models.AnalyzeResult] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = await self._analyze_document_initial( model_id=model_id, analyze_request=analyze_request, pages=pages, locale=locale, string_index_type=string_index_type, features=features, query_fields=query_fields, output_content_format=output_content_format, output=output, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) await raw_result.http_response.read() # type: ignore kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): response_headers = {} response = pipeline_response.http_response response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) response_headers["Operation-Location"] = self._deserialize( "str", response.headers.get("Operation-Location") ) deserialized = _deserialize(_models.AnalyzeResult, response.json().get("analyzeResult")) if cls: return cls(pipeline_response, deserialized, response_headers) # type: ignore return deserialized path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: AsyncPollingMethod = cast( AsyncPollingMethod, AsyncLROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs), ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncAnalyzeDocumentLROPoller[_models.AnalyzeBatchResult].from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncAnalyzeDocumentLROPoller[_models.AnalyzeResult]( self._client, raw_result, get_long_running_output, polling_method # type: ignore ) @distributed_trace_async async def begin_analyze_batch_documents( # type: ignore[override] self, model_id: str, analyze_batch_request: Optional[Union[_models.AnalyzeBatchDocumentsRequest, JSON, IO[bytes]]] = None, *, pages: Optional[str] = None, locale: Optional[str] = None, string_index_type: Optional[Union[str, _models.StringIndexType]] = None, features: Optional[List[Union[str, _models.DocumentAnalysisFeature]]] = None, query_fields: Optional[List[str]] = None, output_content_format: Optional[Union[str, _models.ContentFormat]] = None, output: Optional[List[Union[str, _models.AnalyzeOutputOption]]] = None, **kwargs: Any ) -> AsyncLROPoller[_models.AnalyzeBatchResult]: lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) return await super().begin_analyze_batch_documents( model_id=model_id, analyze_batch_request=analyze_batch_request, pages=pages, locale=locale, string_index_type=string_index_type, features=features, query_fields=query_fields, output_content_format=output_content_format, output=output, polling=AsyncAnalyzeBatchDocumentsLROPollingMethod(timeout=lro_delay), **kwargs ) __all__: List[str] = [ "DocumentIntelligenceClientOperationsMixin", "DocumentIntelligenceAdministrationClientOperationsMixin", ] # Add all objects you want publicly available to users at this package level def patch_sdk(): """Do not remove from this file. `patch_sdk` is a last resort escape hatch that allows you to do customizations you can't accomplish using the techniques described in https://aka.ms/azsdk/python/dpcodegen/python/customize """